Maximize Utility Subject to $R \le 1$: A Simple Price-Theory Approach to Covid-19 Lockdown and Reopening Policy

Eric Budish Chicago Booth

Initial Draft: April 1, 2020 Updated Draft: Nov 9, 2020

▶ This paper argues it is useful to conceptualize $R \le 1$ as a policy constraint, allowing traditional economic and social goals to then be the objective. Informally:

▶ This paper argues it is useful to conceptualize $R \le 1$ as a policy constraint, allowing traditional economic and social goals to then be the objective. Informally:

This paper argues it is useful to conceptualize $R \le 1$ as a policy constraint, allowing traditional economic and social goals to then be the objective. Informally:

```
maximize Social Welfare (1) subject to Standard Economic Constraints R \leq 1: Reduce the Average Transmission Rate to \leq 1
```

► Health policy experts, especially in the very early response to the Covid-19 crisis, seemed to conceptualize the problem as:

▶ This paper argues it is useful to conceptualize $R \le 1$ as a policy constraint, allowing traditional economic and social goals to then be the objective. Informally:

```
maximize Social Welfare (1) subject to Standard Economic Constraints R \leq 1: Reduce the Average Transmission Rate to \leq 1
```

► Health policy experts, especially in the very early response to the Covid-19 crisis, seemed to conceptualize the problem as:

```
minimize Spread of Covid-19 (2) subject to
Keep Society Functioning
```

▶ This paper argues it is useful to conceptualize $R \le 1$ as a policy constraint, allowing traditional economic and social goals to then be the objective. Informally:

```
maximize Social Welfare subject to Standard Economic Constraints R \le 1: Reduce the Average Transmission Rate to \le 1
```

► Health policy experts, especially in the very early response to the Covid-19 crisis, seemed to conceptualize the problem as:

```
minimize Spread of Covid-19
subject to
Keep Society Functioning

(2)
```

Superficially: (1) looks very different from (2)

▶ This paper argues it is useful to conceptualize $R \le 1$ as a policy constraint, allowing traditional economic and social goals to then be the objective. Informally:

```
maximize Social Welfare subject to Standard Economic Constraints R \le 1: Reduce the Average Transmission Rate to \le 1
```

► Health policy experts, especially in the very early response to the Covid-19 crisis, seemed to conceptualize the problem as:

```
minimize Spread of Covid-19 (2) subject to Keep Society Functioning
```

- ► Superficially: (1) looks very different from (2)
- But: because of the $R \le 1$ constraint, (1) reasonably approximates the pure medical objective in (2)

This paper argues it is useful to conceptualize $R \le 1$ as a policy constraint, allowing traditional economic and social goals to then be the objective. Informally:

```
maximize Social Welfare subject to Standard Economic Constraints R < 1: Reduce the Average Transmission Rate to \leq 1
```

► Health policy experts, especially in the very early response to the Covid-19 crisis, seemed to conceptualize the problem as:

```
minimize Spread of Covid-19
subject to
Keep Society Functioning

(2)
```

- ► Superficially: (1) looks very different from (2)
- ▶ But: because of the $R \le 1$ constraint, (1) reasonably approximates the pure medical objective in (2)
- ▶ At the same time, very different policy implications

Framing the problem as "Max Utility s.t. $R \le 1$ " yields two main insights:

- Framing the problem as "Max Utility s.t. $R \le 1$ " yields two main insights:
- 1. $R \leq 1$ imposes a disease-transmission budget on society
 - Spend the budget based on ratio of utility to disease-transmission risk
 - "bang for buck" per unit of virus risk
 - ▶ In math: $\rho = \frac{v-c}{r}$

- Framing the problem as "Max Utility s.t. $R \le 1$ " yields two main insights:
- 1. $R \leq 1$ imposes a disease-transmission budget on society
 - Spend the budget based on ratio of utility to disease-transmission risk
 - "bang for buck" per unit of virus risk
 - In math: $\rho = \frac{v-c}{r}$
- 2. "Expand the Frontier"
 - Masks, Rapid Tests, 6 feet of distance, etc.
 - These all meaningfully reduce risk with much lower utility cost than lockdown
 - Improve bang for buck
 - lackbox Society can do more activity, enjoy more utility, while keeping R < 1

- Framing the problem as "Max Utility s.t. $R \le 1$ " yields two main insights:
- 1. $R \leq 1$ imposes a disease-transmission budget on society
 - Spend the budget based on ratio of utility to disease-transmission risk
 - "bang for buck" per unit of virus risk
 - In math: $\rho = \frac{v-c}{r}$
- 2. "Expand the Frontier"
 - Masks, Rapid Tests, 6 feet of distance, etc.
 - ► These all meaningfully reduce risk with much lower utility cost than lockdown
 - Improve bang for buck
 - Society can do more activity, enjoy more utility, while keeping R < 1
- ightharpoonup Overall, optimal way to get to $R \leq 1$
 - ▶ Use masks, tests, etc. (except where reduction is trivial)
 - Then targeted activity bans

▶ I circulated initial draft of these ideas in April 1st, 2020

- ▶ I circulated initial draft of these ideas in April 1st, 2020
- Goal at the time was to influence policy thinking in two related ways

- ▶ I circulated initial draft of these ideas in April 1st, 2020
- Goal at the time was to influence policy thinking in two related ways
- 1. Focus attention on $R \leq 1$ as opposed to "minimize"
 - $ightharpoonup R \le 1$ approximates "minimize"
 - ▶ But allows for other policy considerations beyond just the virus

- ▶ I circulated initial draft of these ideas in April 1st, 2020
- Goal at the time was to influence policy thinking in two related ways
- 1. Focus attention on $R \leq 1$ as opposed to "minimize"
 - $ightharpoonup R \le 1$ approximates "minimize"
 - ▶ But allows for other policy considerations beyond just the virus
- 2. Encourage an "engineering mindset" re $R \leq 1$
 - Lockdown is not very creative
 - Many more creative ways to reduce risk while allowing greater utility
 - Once the goal is not minimize, interventions need not be perfect to be valuable!

- ▶ I circulated initial draft of these ideas in April 1st, 2020
- Goal at the time was to influence policy thinking in two related ways
- 1. Focus attention on $R \leq 1$ as opposed to "minimize"
 - $ightharpoonup R \le 1$ approximates "minimize"
 - But allows for other policy considerations beyond just the virus
- 2. Encourage an "engineering mindset" re $R \leq 1$
 - Lockdown is not very creative
 - Many more creative ways to reduce risk while allowing greater utility
 - Once the goal is not minimize, interventions need not be perfect to be valuable!
- Whether the April draft succeeded in some modest way is hard to know
 - ▶ Much more focus on *R*, masks and social distance as an alternative to lockdown, etc.

- ▶ I circulated initial draft of these ideas in April 1st, 2020
- Goal at the time was to influence policy thinking in two related ways
- 1. Focus attention on $R \leq 1$ as opposed to "minimize"
 - ► R < 1 approximates "minimize"
 - ▶ But allows for other policy considerations beyond just the virus
- 2. Encourage an "engineering mindset" re $R \leq 1$
 - Lockdown is not very creative
 - Many more creative ways to reduce risk while allowing greater utility
 - Once the goal is not minimize, interventions need not be perfect to be valuable!
- Whether the April draft succeeded in some modest way is hard to know
 - ▶ Much more focus on *R*, masks and social distance as an alternative to lockdown, etc.
- \blacktriangleright But: safe to say that society did not converge on "Max Utility s.t. $R \leq 1$ "

Why $R \leq 1$: Exponential Growth

Note: Output is based on the standard SIR model. Each line depicts a different initial infection seed. The γ parameter is fixed throughout at 1/5, which represents a duration of infectiousness of 5 days. The β parameter, which represents the rate of infectiousness, is varied such that $R_0=\beta/\gamma$ is the value depicted along the horizontal axis.

Yes.

- Yes.
- ► Multiple examples.
- ► Intuition:

- Yes.
- ► Multiple examples.
- ► Intuition:
 - 1. R_0 est'd 2.5-3.0 with unaware population, no interventions

- Yes.
- Multiple examples.
- ► Intuition:
 - 1. R_0 est'd 2.5-3.0 with unaware population, no interventions
 - 2. We know a lot about how the virus spreads

- Yes.
- Multiple examples.
- ► Intuition:
 - 1. R_0 est'd 2.5-3.0 with unaware population, no interventions
 - 2. We know a $\underline{\text{lot}}$ about how the virus spreads
 - 3. So 2/3 reduction (i.e., $\frac{3-1}{3} = \frac{2}{3}$) not at all crazy

- Yes.
- ► Multiple examples.
- ► Intuition:
 - 1. R_0 est'd 2.5-3.0 with unaware population, no interventions
 - 2. We know a lot about how the virus spreads
 - 3. So 2/3 reduction (i.e., $\frac{3-1}{3} = \frac{2}{3}$) not at all crazy
- Aside on new variant
 - ightharpoonup Suppose R_0 is 4.0 instead
 - ► Then need a 3/4 reduction (i.e., $\frac{4-1}{4} = \frac{3}{4}$)
 - Again, not crazy

Is $R \leq 1$ Optimal? Simple Price Theory

Is $R \leq 1$ Enough? Too Much?

- ▶ Is $R \le 1$ enough?
 - If current Infected population already very high then may want a period of R << 1 to reduce Infected pop'n, then transition to $R \leq 1$, to satisfactorily approximate health objective in (2)
 - "Hammer and Dance", AEI "Road Map to Reopening"
 - ► (To do this optimally, you need a dynamic model)

Is $R \leq 1$ Enough? Too Much?

- ▶ Is $R \le 1$ enough?
 - If current Infected population already very high then may want a period of R << 1 to reduce Infected pop'n, then transition to $R \leq 1$, to satisfactorily approximate health objective in (2)
 - "Hammer and Dance", AEI "Road Map to Reopening"
 - (To do this optimally, you need a dynamic model)
- ▶ Is $R \le 1$ too much?
 - ► This formulation implicitly assumes mortality rate is high and Susceptible population is high.
 - ▶ If not then $R \le 1$ likely too restrictive
 - Similarly: if mortality rate is sufficiently low for a sufficiently large sub-population, then $R \le 1$ may be too restrictive

Is $R \leq 1$ Enough? Too Much?

- ▶ Is $R \le 1$ enough?
 - If current Infected population already very high then may want a period of R << 1 to reduce Infected pop'n, then transition to $R \leq 1$, to satisfactorily approximate health objective in (2)
 - ▶ "Hammer and Dance", AEI "Road Map to Reopening"
 - (To do this optimally, you need a dynamic model)
- ▶ Is $R \le 1$ too much?
 - This formulation implicitly assumes mortality rate is high and Susceptible population is high.
 - ▶ If not then $R \le 1$ likely too restrictive
 - Similarly: if mortality rate is sufficiently low for a sufficiently large sub-population, then $R \le 1$ may be too restrictive
- I will come back to both of these issues towards the end of the talk

- Society chooses a vector of activities $x \in X = [0,1]^n$. For each activity i:
 - ▶ Utility v_i : traditional economic benefits and costs, v_i and c_i
 - ightharpoonup Disease-transmission risk r_i .

- Society chooses a vector of activities $x \in X = [0, 1]^n$. For each activity i:
 - ightharpoonup Utility v_i : traditional economic benefits and costs, v_i and c_i
 - Disease-transmission risk r_i.
- Myopic Utilitarian Objective: n

$$\max \sum_{i=1}^{n} x_i (v_i - c_i) \tag{3}$$

- Society chooses a vector of activities $x \in X = [0, 1]^n$. For each activity i:
 - ightharpoonup Utility v_i : traditional economic benefits and costs, v_i and c_i
 - Disease-transmission risk r_i.
- Myopic Utilitarian Objective:

$$\max \sum_{i=1} x_i (v_i - c_i) \tag{3}$$

Pure Medical Objective:

$$\min \sum_{i=1} x_i r_i \tag{4}$$

- Society chooses a vector of activities $x \in X = [0,1]^n$. For each activity i:
 - ▶ Utility v_i : traditional economic benefits and costs, v_i and c_i
 - Disease-transmission risk r_i.
- Myopic Utilitarian Objective:

$$\max \sum_{i=1} x_i (v_i - c_i) \tag{3}$$

Pure Medical Objective:

$$\min \sum_{i=1}^{n} x_i r_i \tag{4}$$

 $ightharpoonup R \le 1$ as a constraint:

$$\max_{x_i} \sum_{i=1}^{n} x_i (v_i - c_i)$$
 subject to
$$\sum_{i=1}^{n} x_i r_i \le 1$$
 (5)

Max Utility s.t. $R \leq 1$: Solution

Key object: ratio of economic value to disease-transmission risk for each activity i

$$\rho_i = \frac{(v_i - c_i)}{r_i}$$

The "bang for buck" of activity i

Max Utility s.t. $R \leq 1$: Solution

Key object: ratio of economic value to disease-transmission risk for each activity i

$$\rho_i = \frac{(v_i - c_i)}{r_i}$$

The "bang for buck" of activity i

- Optimal solution:
 - Choose activities in descending order of their ρ_i 's until we exhaust the disease-transmission budget

Max Utility s.t. $R \leq 1$: Solution

Key object: ratio of economic value to disease-transmission risk for each activity i

$$\rho_i = \frac{(v_i - c_i)}{r_i}$$

The "bang for buck" of activity i

- Optimal solution:
 - ► Choose activities in descending order of their ρ_i 's until we exhaust the disease-transmission budget
- Notice
 - ightharpoonup some activities with high risk r_i should be included

Max Utility s.t. $R \leq 1$: Solution

Key object: ratio of economic value to disease-transmission risk for each activity i

$$\rho_i = \frac{(v_i - c_i)}{r_i}$$

The "bang for buck" of activity i

- Optimal solution:
 - ► Choose activities in descending order of their ρ_i 's until we exhaust the disease-transmission budget
- Notice
 - \triangleright some activities with high risk r_i should be included
 - \triangleright some activities with relatively low risk r_i should be dropped

Max Utility s.t. $R \leq 1$: Solution

Key object: ratio of economic value to disease-transmission risk for each activity i

$$\rho_i = \frac{(v_i - c_i)}{r_i}$$

The "bang for buck" of activity i

- ▶ Optimal solution:
 - Choose activities in descending order of their ρ_i 's until we exhaust the disease-transmission budget
- Notice
 - \triangleright some activities with high risk r_i should be included
 - \triangleright some activities with relatively low risk r_i should be dropped
 - optimum sorts not by absolute risk, but by utility per unit of risk

Solving the Basic Model: Graphic Depiction

Simple Interventions

- ▶ We know a <u>lot</u> about how Covid-19 spreads
- Relatively simple interventions can reduce risk meaningfully at low cost to utility
 - Examples: face-masks, physical distance, testing, handwashing, stay-home-if-sick

Simple Interventions

- We know a <u>lot</u> about how Covid-19 spreads
- Relatively simple interventions can reduce risk meaningfully at low cost to utility
 - Examples: face-masks, physical distance, testing, handwashing, stay-home-if-sick
- In model language:
 - ► Risk r_i: much lower
 - ▶ Utility $v_i c_i$: a bit lower
 - ▶ Bang-for-buck $\rho_i = \frac{v_i c_i}{r_i}$: much higher

Simple Interventions

- We know a <u>lot</u> about how Covid-19 spreads
- Relatively simple interventions can reduce risk meaningfully at low cost to utility
 - Examples: face-masks, physical distance, testing, handwashing, stay-home-if-sick
- In model language:
 - ► Risk r_i: much lower
 - ▶ Utility $v_i c_i$: a bit lower
 - ▶ Bang-for-buck $\rho_i = \frac{v_i c_i}{r_i}$: much higher
- ▶ Thus: allows society to engage in more activity and achieve more utility while staying within $R \le 1$ budget

"Optimal Masks"

- Let's use the phrase "masks" to represent the suite of potential low-cost interventions
 - Changing over time as understanding improves
 - ► Avoiding phrase "NPIs" to distinguish from lockdowns (Ferguson et al, 2020)

"Optimal Masks"

- Let's use the phrase "masks" to represent the suite of potential low-cost interventions
 - Changing over time as understanding improves
 - Avoiding phrase "NPIs" to distinguish from lockdowns (Ferguson et al, 2020)
- A <u>necessary</u> condition for masks to improve welfare: improve bang-for-buck

$$\rho_i^m \ge \rho_i$$

"Optimal Masks"

- Let's use the phrase "masks" to represent the suite of potential low-cost interventions
 - Changing over time as understanding improves
 - Avoiding phrase "NPIs" to distinguish from lockdowns (Ferguson et al, 2020)
- A <u>necessary</u> condition for masks to improve welfare: improve bang-for-buck

$$\rho_i^m \ge \rho_i$$

▶ The optimal mask policy for activity *i* maximizes

$$\begin{array}{ccccc} \underline{\Delta r_i} & \cdot & \underline{\rho^*} & - & \underline{\Delta u_i} \\ \text{risk reduction} & \text{marginal value} & \text{utility harm} \\ \text{from mask} & \text{of risk budget} & \text{of mask} \end{array}$$

Simple Interventions Reduce the Cost of Mitigation

Simple Interventions Reduce the Cost of Mitigation

Numerical Example

- Simple numerical example to convey importance of simple interventions
- Assume utility and risk are "uniformly distributed"
 - Activities are equally likely to be anywhere on the square of utility-versus-risk

Numerical Example

- Simple numerical example to convey importance of simple interventions
- Assume utility and risk are "uniformly distributed"
 - Activities are equally likely to be anywhere on the square of utility-versus-risk
- If society does all activities, then total risk is R_0 (that's what R_0 means: risk in a society that is unaware)
 - Consider range of 2.0-4.0

Numerical Example

- Simple numerical example to convey importance of simple interventions
- Assume utility and risk are "uniformly distributed"
 - Activities are equally likely to be anywhere on the square of utility-versus-risk
- ▶ If society does all activities, then total risk is R₀ (that's what R₀ means: risk in a society that is unaware)
 - Consider range of 2.0-4.0
- "Masks" reduce risk by anywhere from 30-70%
 - Abaluck et al, Hatzius et al: cloth face-masks alone on order of 20-50% reduction
 - Chu et al, Howard et al, meta-analyses (labs, hospitals, ecological)
 - Romer mass tests
 - Other rapid test variations
 - Also: distance, hand-washing, etc.

Optimum without Simple Interventions

Value of R ₀					
2.0	2.5	3.0	3.5	4.0	
37.5	45.0	50.0	53.7	56.7	
18.8	27.0	33.3	38.3	42.3	
62.5	55.0	50.0	46.3	43.3	
81.2	73.0	66.7	61.7	57.7	
	37.5 18.8 62.5	2.0 2.5 37.5 45.0 18.8 27.0 62.5 55.0	2.0 2.5 3.0 37.5 45.0 50.0 18.8 27.0 33.3 62.5 55.0 50.0	2.0 2.5 3.0 3.5 37.5 45.0 50.0 53.7 18.8 27.0 33.3 38.3 62.5 55.0 50.0 46.3	

Optimum $\underline{\text{with}}$ Simple Interventions

Main R₀ Scenario

		Mask Efficacy				
N	lo Masks	30%	40%	50%	60%	70%
R if all activities are kept	2.50	1.75	1.50	1.25	1.00	0.75
To achieve $R \leq 1$:						
% Activities Dropped	45.0	32.1	25.0	15.0	0.0	0.0
% Pre-Virus Utility Dropped	27.0	13.8	8.3	3.0	0.0	0.0
Society % of Pre-Virus Utility:						
if Masks Reduce Utility by 0%	73.0	86.2	91.7	97.0	100.0	100.0
if Masks Reduce Utility by 109	% N/A	77.6	82.5	87.3	90.0	90.0

Note: The term "Masks" is used to denote the set of Simple Interventions including face-masks, tests, social distance, etc.

Optimum with Simple Interventions

High R_0 Scenario

		Mask Efficacy				
	lo Masks	30%	40%	50%	60%	70%
R if all activities are kept	4.00	2.80	2.40	2.00	1.60	1.20
To achieve $R \leq 1$:						
% Activities Dropped	56.7	48.2	43.7	37.5	28.1	12.5
% Pre-Virus Utility Dropped	42.3	31.0	25.5	18.8	10.5	2.1
Society % of Pre-Virus Utility:						
if Masks Reduce Utility by 0%	57.7	69.0	74.5	81.2	89.5	97.9
if Masks Reduce Utility by 10	% N/A	62.1	67.0	73.1	80.5	88.1

Note: The term "Masks" is used to denote the set of Simple Interventions including face-masks, tests, social distance, etc.

Optimum $\underline{\text{with}}$ Simple Interventions

Low R₀ Scenario

			Mask Efficacy				
N	lo Masks	30%	40%	50%	60%	70%	
R if all activities are kept	2.00	1.40	1.20	1.00	0.80	0.60	
To achieve $R \leq 1$:							
% Activities Dropped	37.5	21.4	12.5	0.0	0.0	0.0	
% Pre-Virus Utility Dropped	18.8	6.1	2.1	0.0	0.0	0.0	
Society % of Pre-Virus Utility:							
if Masks Reduce Utility by 0%	81.2	93.9	97.9	100.0	100.0	100.0	
if Masks Reduce Utility by 10	% N/A	84.5	88.1	90.0	90.0	90.0	

Note: The term "Masks" is used to denote the set of Simple Interventions including face-masks, tests, social distance, etc.

Effect of Simple Interventions on Keep/Drop

Effect on the Economic Cost of Mitigation

Discussion: is $R \le 1$ Enough? Too Much?

- ▶ Is $R \le 1$ Enough?
 - ▶ If stock of infections is high
 - ▶ Then quantitatively large difference beween $R \approx 1$ and R << 1
 - ► Also: Goolsbee and Syverson evidence that "fear of the virus" itself will cause behavior change

Discussion: is $R \le 1$ Enough? Too Much?

- ▶ Is $R \le 1$ Enough?
 - If stock of infections is high
 - ▶ Then quantitatively large difference beween $R \approx 1$ and R << 1
 - ► Also: Goolsbee and Syverson evidence that "fear of the virus" itself will cause behavior change
- ► Is *R* < 1 Too Much?
 - "Herd immunity": if R > 1, then eventually 200+ million infections
 - Initially there was a lot of uncertainty about infection fatality rate and rates of severe cases
 - With what we know now: the more credible case to consider is a "Young-Old" strategy, along the lines of Acemoglu, Chernozhukov, Werning and Whinston (also Great Barrington Declaration)

Four features of Covid-19, relative to past pandemics, that justifies a new approach:

Four features of Covid-19, relative to past pandemics, that justifies a new approach:

- 1. Mortality / morbidity cost high
 - $ightharpoonup R \le 1$ a desirable policy goal even at meaningful expense
 - ▶ Recall: even $R = 1.5 \rightarrow 200$ million infections in 12 months

Four features of Covid-19, relative to past pandemics, that justifies a new approach:

1. Mortality / morbidity cost high

- $ightharpoonup R \le 1$ a desirable policy goal even at meaningful expense
- ▶ Recall: even $R = 1.5 \rightarrow 200$ million infections in 12 months

2. Eradication likely not feasible

- By the time of policy intervention, eradication unrealistic for many countries
- ► (If eradication were feasible: like a one-time fixed cost, versus ongoing costs of containment)

Four features of Covid-19, relative to past pandemics, that justifies a new approach:

3. $R \le 1$ feasible with modestly expensive measures

- Medical experts quickly converged on a suite of public-health responses
- Atul Gawande: "if you have hygiene, distancing, mandatory masks, and screen everybody for symptoms so that they stay home and get tested, that shuts the virus down"

Four features of Covid-19, relative to past pandemics, that justifies a new approach:

3. $R \le 1$ feasible with modestly expensive measures

- Medical experts quickly converged on a suite of public-health responses
- Atul Gawande: "if you have hygiene, distancing, mandatory masks, and screen everybody for symptoms so that they stay home and get tested, that shuts the virus down"

4. Minimize unboundedly expensive

- When eradication is infeasible, second-best is "minimize" (Osterholm)
- However, hard to think about tradeoffs if the interventions themselves are very expensive
- Useful contrast: HIV

It therefore seems that Covid-19 required a novel play in the epidemiology playbook: maximize utility subject to $R \le 1$

- It therefore seems that Covid-19 required a novel play in the epidemiology playbook: maximize utility subject to $R \le 1$
- That is, contain the exponential growth as efficiently as possible

- It therefore seems that Covid-19 required a novel play in the epidemiology playbook: maximize utility subject to $R \le 1$
- That is, contain the exponential growth as efficiently as possible
- ► Final point: this paper, at most, puts economics language on a formulation many others converged on as well

- ▶ It therefore seems that Covid-19 required a novel play in the epidemiology playbook: maximize utility subject to $R \le 1$
- ▶ That is, contain the exponential growth as efficiently as possible
- ► Final point: this paper, at most, puts economics language on a formulation many others converged on as well
- ▶ Hopefully we will do a better job in the next pandemic.