
Designing Random Allocation Mechanisms:
Theory and Applications

Eric Budish, Yeon-Koo Che, Fuhito Kojima, Paul Milgrom1

November 22, 2010

1University of Chicago, Columbia University, Stanford University

Overview

Lotteries are common in resource allocation

School choice. (Abdulkadiroglu et al, 2005a, b)
House allocation. (Chen and Sonmez, 2002)
Organ transplantation. (Roth, Sonmez and Unver, 2004)
Office assignment. (Baccara et al, 2009)
Course allocation. (Budish and Cantillon, 2009)

Deterministic allocations are unfair, when

goods are indivisible and
monetary transfers are limited.

Randomizing allocations is necessary to restore ex-ante
fairness

Overview

Lotteries are common in resource allocation

School choice. (Abdulkadiroglu et al, 2005a, b)
House allocation. (Chen and Sonmez, 2002)
Organ transplantation. (Roth, Sonmez and Unver, 2004)
Office assignment. (Baccara et al, 2009)
Course allocation. (Budish and Cantillon, 2009)

Deterministic allocations are unfair, when

goods are indivisible and
monetary transfers are limited.

Randomizing allocations is necessary to restore ex-ante
fairness

Overview

Lotteries are common in resource allocation

School choice. (Abdulkadiroglu et al, 2005a, b)
House allocation. (Chen and Sonmez, 2002)
Organ transplantation. (Roth, Sonmez and Unver, 2004)
Office assignment. (Baccara et al, 2009)
Course allocation. (Budish and Cantillon, 2009)

Deterministic allocations are unfair, when

goods are indivisible and
monetary transfers are limited.

Randomizing allocations is necessary to restore ex-ante
fairness

Overview

Lotteries are common in resource allocation

School choice. (Abdulkadiroglu et al, 2005a, b)
House allocation. (Chen and Sonmez, 2002)
Organ transplantation. (Roth, Sonmez and Unver, 2004)
Office assignment. (Baccara et al, 2009)
Course allocation. (Budish and Cantillon, 2009)

Deterministic allocations are unfair, when

goods are indivisible and
monetary transfers are limited.

Randomizing allocations is necessary to restore ex-ante
fairness

Designing random allocation mechanisms

A typical method: (i) Select a set of ex post desirable
allocations, and (ii) “randomize” among them: (e.g., Random
serial dictatorship, Gale-Shapley DA, Top trading cycles with
ties)
⇒ entails ex ante inefficiencies.

Alternative method: Choose directly “lotteries of goods” for
the agents, called random assignment.

The Walrasian “pseudo-market” mechanism (Hylland and
Zeckhauser 1979),
The probabilistic serial mechanism (Bogomolnaia and Moulin
2001).

An issue: What random assignments are implementable? I.e.,
given a random assignment, is there always a lottery over sure
outcomes that realizes it?

Designing random allocation mechanisms

A typical method: (i) Select a set of ex post desirable
allocations, and (ii) “randomize” among them: (e.g., Random
serial dictatorship, Gale-Shapley DA, Top trading cycles with
ties)
⇒ entails ex ante inefficiencies.

Alternative method: Choose directly “lotteries of goods” for
the agents, called random assignment.

The Walrasian “pseudo-market” mechanism (Hylland and
Zeckhauser 1979),
The probabilistic serial mechanism (Bogomolnaia and Moulin
2001).

An issue: What random assignments are implementable? I.e.,
given a random assignment, is there always a lottery over sure
outcomes that realizes it?

Designing random allocation mechanisms

A typical method: (i) Select a set of ex post desirable
allocations, and (ii) “randomize” among them: (e.g., Random
serial dictatorship, Gale-Shapley DA, Top trading cycles with
ties)
⇒ entails ex ante inefficiencies.

Alternative method: Choose directly “lotteries of goods” for
the agents, called random assignment.

The Walrasian “pseudo-market” mechanism (Hylland and
Zeckhauser 1979),
The probabilistic serial mechanism (Bogomolnaia and Moulin
2001).

An issue: What random assignments are implementable? I.e.,
given a random assignment, is there always a lottery over sure
outcomes that realizes it?

Designing random allocation mechanisms

A typical method: (i) Select a set of ex post desirable
allocations, and (ii) “randomize” among them: (e.g., Random
serial dictatorship, Gale-Shapley DA, Top trading cycles with
ties)
⇒ entails ex ante inefficiencies.

Alternative method: Choose directly “lotteries of goods” for
the agents, called random assignment.

The Walrasian “pseudo-market” mechanism (Hylland and
Zeckhauser 1979),
The probabilistic serial mechanism (Bogomolnaia and Moulin
2001).

An issue: What random assignments are implementable? I.e.,
given a random assignment, is there always a lottery over sure
outcomes that realizes it?

Designing random allocation mechanisms

A typical method: (i) Select a set of ex post desirable
allocations, and (ii) “randomize” among them: (e.g., Random
serial dictatorship, Gale-Shapley DA, Top trading cycles with
ties)
⇒ entails ex ante inefficiencies.

Alternative method: Choose directly “lotteries of goods” for
the agents, called random assignment.

The Walrasian “pseudo-market” mechanism (Hylland and
Zeckhauser 1979),
The probabilistic serial mechanism (Bogomolnaia and Moulin
2001).

An issue: What random assignments are implementable? I.e.,
given a random assignment, is there always a lottery over sure
outcomes that realizes it?

Designing random allocation mechanisms

A typical method: (i) Select a set of ex post desirable
allocations, and (ii) “randomize” among them: (e.g., Random
serial dictatorship, Gale-Shapley DA, Top trading cycles with
ties)
⇒ entails ex ante inefficiencies.

Alternative method: Choose directly “lotteries of goods” for
the agents, called random assignment.

The Walrasian “pseudo-market” mechanism (Hylland and
Zeckhauser 1979),
The probabilistic serial mechanism (Bogomolnaia and Moulin
2001).

An issue: What random assignments are implementable? I.e.,
given a random assignment, is there always a lottery over sure
outcomes that realizes it?

Designing random allocation mechanisms

A typical method: (i) Select a set of ex post desirable
allocations, and (ii) “randomize” among them: (e.g., Random
serial dictatorship, Gale-Shapley DA, Top trading cycles with
ties)
⇒ entails ex ante inefficiencies.

Alternative method: Choose directly “lotteries of goods” for
the agents, called random assignment.

The Walrasian “pseudo-market” mechanism (Hylland and
Zeckhauser 1979),
The probabilistic serial mechanism (Bogomolnaia and Moulin
2001).

An issue: What random assignments are implementable? I.e.,
given a random assignment, is there always a lottery over sure
outcomes that realizes it?

Designing random allocation mechanisms

A typical method: (i) Select a set of ex post desirable
allocations, and (ii) “randomize” among them: (e.g., Random
serial dictatorship, Gale-Shapley DA, Top trading cycles with
ties)
⇒ entails ex ante inefficiencies.

Alternative method: Choose directly “lotteries of goods” for
the agents, called random assignment.

The Walrasian “pseudo-market” mechanism (Hylland and
Zeckhauser 1979),
The probabilistic serial mechanism (Bogomolnaia and Moulin
2001).

An issue: What random assignments are implementable? I.e.,
given a random assignment, is there always a lottery over sure
outcomes that realizes it?

Illustration

Implementing random assignments is nontrivial since
assignments need to be “correlated.” Consider assigning 3
goods a, b, c to 3 agents 1, 2, 3, one for each. Can express an
arbitrary random assignment in a matrix form:

P =

0.5 0.5 0
0 0.5 0.5

0.5 0 0.5

 =

1

2



1 0 0
0 1 0
0 0 1



+
1

2

0 1 0
0 0 1
1 0 0

 .

Birkhoff-von Neumann Theorem shows: For the one-to-one
assignment problem, any random assignment can be
implemented as a lottery over deterministic assignments.
(More formally, any bistochastic matrix can be written as a
convex combination of permutation matrices.)

Illustration

Implementing random assignments is nontrivial since
assignments need to be “correlated.” Consider assigning 3
goods a, b, c to 3 agents 1, 2, 3, one for each. Can express an
arbitrary random assignment in a matrix form:

P =

0.5 0.5 0
0 0.5 0.5

0.5 0 0.5

 =

1

2



1 0 0
0 1 0
0 0 1



+
1

2

0 1 0
0 0 1
1 0 0

 .

Birkhoff-von Neumann Theorem shows: For the one-to-one
assignment problem, any random assignment can be
implemented as a lottery over deterministic assignments.
(More formally, any bistochastic matrix can be written as a
convex combination of permutation matrices.)

Illustration

Implementing random assignments is nontrivial since
assignments need to be “correlated.” Consider assigning 3
goods a, b, c to 3 agents 1, 2, 3, one for each. Can express an
arbitrary random assignment in a matrix form:

P =

0.5 0.5 0
0 0.5 0.5

0.5 0 0.5

 =

1

2

1

0 0
0 1 0
0 0 1



+
1

2

0 1 0
0 0 1
1 0 0

 .

Birkhoff-von Neumann Theorem shows: For the one-to-one
assignment problem, any random assignment can be
implemented as a lottery over deterministic assignments.
(More formally, any bistochastic matrix can be written as a
convex combination of permutation matrices.)

Illustration

Implementing random assignments is nontrivial since
assignments need to be “correlated.” Consider assigning 3
goods a, b, c to 3 agents 1, 2, 3, one for each. Can express an
arbitrary random assignment in a matrix form:

P =

0.5 0.5 0
0 0.5 0.5

0.5 0 0.5

 =

1

2

1 0

0
0 1 0
0 0 1



+
1

2

0 1 0
0 0 1
1 0 0

 .

Birkhoff-von Neumann Theorem shows: For the one-to-one
assignment problem, any random assignment can be
implemented as a lottery over deterministic assignments.
(More formally, any bistochastic matrix can be written as a
convex combination of permutation matrices.)

Illustration

Implementing random assignments is nontrivial since
assignments need to be “correlated.” Consider assigning 3
goods a, b, c to 3 agents 1, 2, 3, one for each. Can express an
arbitrary random assignment in a matrix form:

P =

0.5 0.5 0
0 0.5 0.5

0.5 0 0.5

 =

1

2

1 0

0
0

1

0
0 0 1



+
1

2

0 1 0
0 0 1
1 0 0

 .

Birkhoff-von Neumann Theorem shows: For the one-to-one
assignment problem, any random assignment can be
implemented as a lottery over deterministic assignments.
(More formally, any bistochastic matrix can be written as a
convex combination of permutation matrices.)

Illustration

Implementing random assignments is nontrivial since
assignments need to be “correlated.” Consider assigning 3
goods a, b, c to 3 agents 1, 2, 3, one for each. Can express an
arbitrary random assignment in a matrix form:

P =

0.5 0.5 0
0 0.5 0.5

0.5 0 0.5

 =

1

2

1 0

0
0

1 0

0 0 1



+
1

2

0 1 0
0 0 1
1 0 0

 .

Birkhoff-von Neumann Theorem shows: For the one-to-one
assignment problem, any random assignment can be
implemented as a lottery over deterministic assignments.
(More formally, any bistochastic matrix can be written as a
convex combination of permutation matrices.)

Illustration

Implementing random assignments is nontrivial since
assignments need to be “correlated.” Consider assigning 3
goods a, b, c to 3 agents 1, 2, 3, one for each. Can express an
arbitrary random assignment in a matrix form:

P =

0.5 0.5 0
0 0.5 0.5

0.5 0 0.5

 =

1

2

1 0

0
0

1 0

0 0

1



+
1

2

0 1 0
0 0 1
1 0 0

 .

Birkhoff-von Neumann Theorem shows: For the one-to-one
assignment problem, any random assignment can be
implemented as a lottery over deterministic assignments.
(More formally, any bistochastic matrix can be written as a
convex combination of permutation matrices.)

Illustration

Implementing random assignments is nontrivial since
assignments need to be “correlated.” Consider assigning 3
goods a, b, c to 3 agents 1, 2, 3, one for each. Can express an
arbitrary random assignment in a matrix form:

P =

0.5 0.5 0
0 0.5 0.5

0.5 0 0.5

 =
1

2

1 0 0
0 1 0
0 0 1



+
1

2

0 1 0
0 0 1
1 0 0

 .

Birkhoff-von Neumann Theorem shows: For the one-to-one
assignment problem, any random assignment can be
implemented as a lottery over deterministic assignments.
(More formally, any bistochastic matrix can be written as a
convex combination of permutation matrices.)

Illustration

Implementing random assignments is nontrivial since
assignments need to be “correlated.” Consider assigning 3
goods a, b, c to 3 agents 1, 2, 3, one for each. Can express an
arbitrary random assignment in a matrix form:

P =

0.5 0.5 0
0 0.5 0.5

0.5 0 0.5

 =
1

2

1 0 0
0 1 0
0 0 1

 +
1

2

0 1 0
0 0 1
1 0 0

 .

Birkhoff-von Neumann Theorem shows: For the one-to-one
assignment problem, any random assignment can be
implemented as a lottery over deterministic assignments.
(More formally, any bistochastic matrix can be written as a
convex combination of permutation matrices.)

Illustration

Implementing random assignments is nontrivial since
assignments need to be “correlated.” Consider assigning 3
goods a, b, c to 3 agents 1, 2, 3, one for each. Can express an
arbitrary random assignment in a matrix form:

P =

0.5 0.5 0
0 0.5 0.5

0.5 0 0.5

 =
1

2

1 0 0
0 1 0
0 0 1

 +
1

2

0 1 0
0 0 1
1 0 0

 .

Birkhoff-von Neumann Theorem shows: For the one-to-one
assignment problem, any random assignment can be
implemented as a lottery over deterministic assignments.
(More formally, any bistochastic matrix can be written as a
convex combination of permutation matrices.)

Illustration

Implementing random assignments is nontrivial since
assignments need to be “correlated.” Consider assigning 3
goods a, b, c to 3 agents 1, 2, 3, one for each. Can express an
arbitrary random assignment in a matrix form:

P =

0.5 0.5 0
0 0.5 0.5

0.5 0 0.5

 =
1

2

1 0 0
0 1 0
0 0 1

 +
1

2

0 1 0
0 0 1
1 0 0

 .

Birkhoff-von Neumann Theorem shows: For the one-to-one
assignment problem, any random assignment can be
implemented as a lottery over deterministic assignments.
(More formally, any bistochastic matrix can be written as a
convex combination of permutation matrices.)

Generalizing the RA method

The RA method (including HZ and BM) has been applied primarily
to an one-to-one assignment problem. To gain practical
applicability,

the model need to be generalized to allow for many-to-one,
many-to-many matchings, and unassignment.

the method must be extended to accommodate a variety of
constraints:

Group-specific quota (“Controlled choice”): School
systems seek balance in student body based on race, ethnicity,
gender, test scores (NYC, EdOpt), residence (Seoul).
⇒ Sub-column constraint.
Within agent constraint: Scheduling and curriculum
constraints in course allocation
⇒ Sub-row constraint.
Endogenous capacities: Schools may run multiple programs
the relative sizes of which are adjustable.
⇒ Multi-column constraint

Generalizing the RA method

The RA method (including HZ and BM) has been applied primarily
to an one-to-one assignment problem. To gain practical
applicability,

the model need to be generalized to allow for many-to-one,
many-to-many matchings, and unassignment.

the method must be extended to accommodate a variety of
constraints:

Group-specific quota (“Controlled choice”): School
systems seek balance in student body based on race, ethnicity,
gender, test scores (NYC, EdOpt), residence (Seoul).
⇒ Sub-column constraint.
Within agent constraint: Scheduling and curriculum
constraints in course allocation
⇒ Sub-row constraint.
Endogenous capacities: Schools may run multiple programs
the relative sizes of which are adjustable.
⇒ Multi-column constraint

Generalizing the RA method

The RA method (including HZ and BM) has been applied primarily
to an one-to-one assignment problem. To gain practical
applicability,

the model need to be generalized to allow for many-to-one,
many-to-many matchings, and unassignment.

the method must be extended to accommodate a variety of
constraints:

Group-specific quota (“Controlled choice”): School
systems seek balance in student body based on race, ethnicity,
gender, test scores (NYC, EdOpt), residence (Seoul).
⇒ Sub-column constraint.
Within agent constraint: Scheduling and curriculum
constraints in course allocation
⇒ Sub-row constraint.
Endogenous capacities: Schools may run multiple programs
the relative sizes of which are adjustable.
⇒ Multi-column constraint

Generalizing the RA method

The RA method (including HZ and BM) has been applied primarily
to an one-to-one assignment problem. To gain practical
applicability,

the model need to be generalized to allow for many-to-one,
many-to-many matchings, and unassignment.

the method must be extended to accommodate a variety of
constraints:

Group-specific quota (“Controlled choice”): School
systems seek balance in student body based on race, ethnicity,
gender, test scores (NYC, EdOpt), residence (Seoul).
⇒ Sub-column constraint.
Within agent constraint: Scheduling and curriculum
constraints in course allocation
⇒ Sub-row constraint.
Endogenous capacities: Schools may run multiple programs
the relative sizes of which are adjustable.
⇒ Multi-column constraint

Generalizing the RA method

The RA method (including HZ and BM) has been applied primarily
to an one-to-one assignment problem. To gain practical
applicability,

the model need to be generalized to allow for many-to-one,
many-to-many matchings, and unassignment.

the method must be extended to accommodate a variety of
constraints:

Group-specific quota (“Controlled choice”): School
systems seek balance in student body based on race, ethnicity,
gender, test scores (NYC, EdOpt), residence (Seoul).
⇒ Sub-column constraint.
Within agent constraint: Scheduling and curriculum
constraints in course allocation
⇒ Sub-row constraint.
Endogenous capacities: Schools may run multiple programs
the relative sizes of which are adjustable.
⇒ Multi-column constraint

Generalizing the RA method

The RA method (including HZ and BM) has been applied primarily
to an one-to-one assignment problem. To gain practical
applicability,

the model need to be generalized to allow for many-to-one,
many-to-many matchings, and unassignment.

the method must be extended to accommodate a variety of
constraints:

Group-specific quota (“Controlled choice”): School
systems seek balance in student body based on race, ethnicity,
gender, test scores (NYC, EdOpt), residence (Seoul).
⇒ Sub-column constraint.
Within agent constraint: Scheduling and curriculum
constraints in course allocation
⇒ Sub-row constraint.
Endogenous capacities: Schools may run multiple programs
the relative sizes of which are adjustable.
⇒ Multi-column constraint

Generalizing the RA method

The RA method (including HZ and BM) has been applied primarily
to an one-to-one assignment problem. To gain practical
applicability,

the model need to be generalized to allow for many-to-one,
many-to-many matchings, and unassignment.

the method must be extended to accommodate a variety of
constraints:

Group-specific quota (“Controlled choice”): School
systems seek balance in student body based on race, ethnicity,
gender, test scores (NYC, EdOpt), residence (Seoul).
⇒ Sub-column constraint.
Within agent constraint: Scheduling and curriculum
constraints in course allocation
⇒ Sub-row constraint.
Endogenous capacities: Schools may run multiple programs
the relative sizes of which are adjustable.
⇒ Multi-column constraint

Generalizing the RA method

The RA method (including HZ and BM) has been applied primarily
to an one-to-one assignment problem. To gain practical
applicability,

the model need to be generalized to allow for many-to-one,
many-to-many matchings, and unassignment.

the method must be extended to accommodate a variety of
constraints:

Group-specific quota (“Controlled choice”): School
systems seek balance in student body based on race, ethnicity,
gender, test scores (NYC, EdOpt), residence (Seoul).
⇒ Sub-column constraint.
Within agent constraint: Scheduling and curriculum
constraints in course allocation
⇒ Sub-row constraint.
Endogenous capacities: Schools may run multiple programs
the relative sizes of which are adjustable.
⇒ Multi-column constraint

Generalizing the RA method

The RA method (including HZ and BM) has been applied primarily
to an one-to-one assignment problem. To gain practical
applicability,

the model need to be generalized to allow for many-to-one,
many-to-many matchings, and unassignment.

the method must be extended to accommodate a variety of
constraints:

Group-specific quota (“Controlled choice”): School
systems seek balance in student body based on race, ethnicity,
gender, test scores (NYC, EdOpt), residence (Seoul).
⇒ Sub-column constraint.
Within agent constraint: Scheduling and curriculum
constraints in course allocation
⇒ Sub-row constraint.
Endogenous capacities: Schools may run multiple programs
the relative sizes of which are adjustable.
⇒ Multi-column constraint

What we do

1 We generalize Birkhoff-von Neumann theorem for
implementation of random assignments in general
environment:

Identify a sufficient condition under which a random
assignment can be implemented, called “bihierarchy”
Show that the sufficient condition is also necessary in bilateral
matching
Develop a polynomial time algorithm for implementation

2 We extend the random assignment method to market-design
applications

Generalize Bogomolnaia and Moulin’s probabilistic serial
mechanism for applications such as school choice
Generalize Hylland and Zeckhauser’s pseudomarket mechanism
for applications like course allocation

3 Find a way to improve ex post fairness in multi-unit
assignment and two-sided matching

What we do

1 We generalize Birkhoff-von Neumann theorem for
implementation of random assignments in general
environment:

Identify a sufficient condition under which a random
assignment can be implemented, called “bihierarchy”
Show that the sufficient condition is also necessary in bilateral
matching
Develop a polynomial time algorithm for implementation

2 We extend the random assignment method to market-design
applications

Generalize Bogomolnaia and Moulin’s probabilistic serial
mechanism for applications such as school choice
Generalize Hylland and Zeckhauser’s pseudomarket mechanism
for applications like course allocation

3 Find a way to improve ex post fairness in multi-unit
assignment and two-sided matching

What we do

1 We generalize Birkhoff-von Neumann theorem for
implementation of random assignments in general
environment:

Identify a sufficient condition under which a random
assignment can be implemented, called “bihierarchy”
Show that the sufficient condition is also necessary in bilateral
matching
Develop a polynomial time algorithm for implementation

2 We extend the random assignment method to market-design
applications

Generalize Bogomolnaia and Moulin’s probabilistic serial
mechanism for applications such as school choice
Generalize Hylland and Zeckhauser’s pseudomarket mechanism
for applications like course allocation

3 Find a way to improve ex post fairness in multi-unit
assignment and two-sided matching

What we do

1 We generalize Birkhoff-von Neumann theorem for
implementation of random assignments in general
environment:

Identify a sufficient condition under which a random
assignment can be implemented, called “bihierarchy”
Show that the sufficient condition is also necessary in bilateral
matching
Develop a polynomial time algorithm for implementation

2 We extend the random assignment method to market-design
applications

Generalize Bogomolnaia and Moulin’s probabilistic serial
mechanism for applications such as school choice
Generalize Hylland and Zeckhauser’s pseudomarket mechanism
for applications like course allocation

3 Find a way to improve ex post fairness in multi-unit
assignment and two-sided matching

What we do

1 We generalize Birkhoff-von Neumann theorem for
implementation of random assignments in general
environment:

Identify a sufficient condition under which a random
assignment can be implemented, called “bihierarchy”
Show that the sufficient condition is also necessary in bilateral
matching
Develop a polynomial time algorithm for implementation

2 We extend the random assignment method to market-design
applications

Generalize Bogomolnaia and Moulin’s probabilistic serial
mechanism for applications such as school choice
Generalize Hylland and Zeckhauser’s pseudomarket mechanism
for applications like course allocation

3 Find a way to improve ex post fairness in multi-unit
assignment and two-sided matching

What we do

1 We generalize Birkhoff-von Neumann theorem for
implementation of random assignments in general
environment:

Identify a sufficient condition under which a random
assignment can be implemented, called “bihierarchy”
Show that the sufficient condition is also necessary in bilateral
matching
Develop a polynomial time algorithm for implementation

2 We extend the random assignment method to market-design
applications

Generalize Bogomolnaia and Moulin’s probabilistic serial
mechanism for applications such as school choice
Generalize Hylland and Zeckhauser’s pseudomarket mechanism
for applications like course allocation

3 Find a way to improve ex post fairness in multi-unit
assignment and two-sided matching

What we do

1 We generalize Birkhoff-von Neumann theorem for
implementation of random assignments in general
environment:

Identify a sufficient condition under which a random
assignment can be implemented, called “bihierarchy”
Show that the sufficient condition is also necessary in bilateral
matching
Develop a polynomial time algorithm for implementation

2 We extend the random assignment method to market-design
applications

Generalize Bogomolnaia and Moulin’s probabilistic serial
mechanism for applications such as school choice
Generalize Hylland and Zeckhauser’s pseudomarket mechanism
for applications like course allocation

3 Find a way to improve ex post fairness in multi-unit
assignment and two-sided matching

What we do

1 We generalize Birkhoff-von Neumann theorem for
implementation of random assignments in general
environment:

Identify a sufficient condition under which a random
assignment can be implemented, called “bihierarchy”
Show that the sufficient condition is also necessary in bilateral
matching
Develop a polynomial time algorithm for implementation

2 We extend the random assignment method to market-design
applications

Generalize Bogomolnaia and Moulin’s probabilistic serial
mechanism for applications such as school choice
Generalize Hylland and Zeckhauser’s pseudomarket mechanism
for applications like course allocation

3 Find a way to improve ex post fairness in multi-unit
assignment and two-sided matching

Model

N, O are the sets of agents and goods,

A (generalized) random assignment is a matrix
P = (Pia) ∈ R|N|×|O|.
H ⊂ 2N×O is a collection of subsets of N × O, called a
constraint structure.

Integers q
S
≤ qS for each S ∈ H.

Each set S ∈ H is understood to be a “constraint set,” that is,
a set of elements on which a constraint is imposed. q

S
and qS

are floor and ceiling (minimum and maximum) constraints,
respectively. That is, we will consider random assignment P
satisfying

q
S
≤
∑

(i,a)∈S

Pia ≤ qS ,

for each S ∈ H.

Model

N, O are the sets of agents and goods,

A (generalized) random assignment is a matrix
P = (Pia) ∈ R|N|×|O|.
H ⊂ 2N×O is a collection of subsets of N × O, called a
constraint structure.

Integers q
S
≤ qS for each S ∈ H.

Each set S ∈ H is understood to be a “constraint set,” that is,
a set of elements on which a constraint is imposed. q

S
and qS

are floor and ceiling (minimum and maximum) constraints,
respectively. That is, we will consider random assignment P
satisfying

q
S
≤
∑

(i,a)∈S

Pia ≤ qS ,

for each S ∈ H.

Model

N, O are the sets of agents and goods,

A (generalized) random assignment is a matrix
P = (Pia) ∈ R|N|×|O|.
H ⊂ 2N×O is a collection of subsets of N × O, called a
constraint structure.

Integers q
S
≤ qS for each S ∈ H.

Each set S ∈ H is understood to be a “constraint set,” that is,
a set of elements on which a constraint is imposed. q

S
and qS

are floor and ceiling (minimum and maximum) constraints,
respectively. That is, we will consider random assignment P
satisfying

q
S
≤
∑

(i,a)∈S

Pia ≤ qS ,

for each S ∈ H.

Model

N, O are the sets of agents and goods,

A (generalized) random assignment is a matrix
P = (Pia) ∈ R|N|×|O|.
H ⊂ 2N×O is a collection of subsets of N × O, called a
constraint structure.

Integers q
S
≤ qS for each S ∈ H.

Each set S ∈ H is understood to be a “constraint set,” that is,
a set of elements on which a constraint is imposed. q

S
and qS

are floor and ceiling (minimum and maximum) constraints,
respectively. That is, we will consider random assignment P
satisfying

q
S
≤
∑

(i,a)∈S

Pia ≤ qS ,

for each S ∈ H.

Model

N, O are the sets of agents and goods,

A (generalized) random assignment is a matrix
P = (Pia) ∈ R|N|×|O|.
H ⊂ 2N×O is a collection of subsets of N × O, called a
constraint structure.

Integers q
S
≤ qS for each S ∈ H.

Each set S ∈ H is understood to be a “constraint set,” that is,
a set of elements on which a constraint is imposed. q

S
and qS

are floor and ceiling (minimum and maximum) constraints,
respectively. That is, we will consider random assignment P
satisfying

q
S
≤
∑

(i,a)∈S

Pia ≤ qS ,

for each S ∈ H.

Model

N, O are the sets of agents and goods,

A (generalized) random assignment is a matrix
P = (Pia) ∈ R|N|×|O|.
H ⊂ 2N×O is a collection of subsets of N × O, called a
constraint structure.

Integers q
S
≤ qS for each S ∈ H.

Each set S ∈ H is understood to be a “constraint set,” that is,
a set of elements on which a constraint is imposed. q

S
and qS

are floor and ceiling (minimum and maximum) constraints,
respectively. That is, we will consider random assignment P
satisfying

q
S
≤
∑

(i,a)∈S

Pia ≤ qS ,

for each S ∈ H.

Model

N, O are the sets of agents and goods,

A (generalized) random assignment is a matrix
P = (Pia) ∈ R|N|×|O|.
H ⊂ 2N×O is a collection of subsets of N × O, called a
constraint structure.

Integers q
S
≤ qS for each S ∈ H.

Each set S ∈ H is understood to be a “constraint set,” that is,
a set of elements on which a constraint is imposed. q

S
and qS

are floor and ceiling (minimum and maximum) constraints,
respectively. That is, we will consider random assignment P
satisfying

q
S
≤
∑

(i,a)∈S

Pia ≤ qS ,

for each S ∈ H.

Decomposability

Constraint structure H is universally decomposable if, for
each (q

S
, qS)S∈H and P with q

S
≤
∑

(i ,a)∈S Pia ≤ qS for all
S ∈ H, there exists a convex decomposition

P =
K∑

k=1

λkPk , such that

1 each Pk is integer-valued, and
2 q

S
≤
∑

(i,a)∈S Pk
ia ≤ qS , for each k and S ∈ H.

Decomposability means “Every P satisfying all the given
constraints in H can be expressed as a convex combination of
integral matrices satisfying the constraints.” In other words,
any random assignment satisfying constraints in H can be
implemented as a lottery over deterministic assignments that
satisfy constraints in H.

Decomposability

Constraint structure H is universally decomposable if, for
each (q

S
, qS)S∈H and P with q

S
≤
∑

(i ,a)∈S Pia ≤ qS for all
S ∈ H, there exists a convex decomposition

P =
K∑

k=1

λkPk , such that

1 each Pk is integer-valued, and
2 q

S
≤
∑

(i,a)∈S Pk
ia ≤ qS , for each k and S ∈ H.

Decomposability means “Every P satisfying all the given
constraints in H can be expressed as a convex combination of
integral matrices satisfying the constraints.” In other words,
any random assignment satisfying constraints in H can be
implemented as a lottery over deterministic assignments that
satisfy constraints in H.

Decomposability

Constraint structure H is universally decomposable if, for
each (q

S
, qS)S∈H and P with q

S
≤
∑

(i ,a)∈S Pia ≤ qS for all
S ∈ H, there exists a convex decomposition

P =
K∑

k=1

λkPk , such that

1 each Pk is integer-valued, and
2 q

S
≤
∑

(i,a)∈S Pk
ia ≤ qS , for each k and S ∈ H.

Decomposability means “Every P satisfying all the given
constraints in H can be expressed as a convex combination of
integral matrices satisfying the constraints.” In other words,
any random assignment satisfying constraints in H can be
implemented as a lottery over deterministic assignments that
satisfy constraints in H.

Decomposability

Constraint structure H is universally decomposable if, for
each (q

S
, qS)S∈H and P with q

S
≤
∑

(i ,a)∈S Pia ≤ qS for all
S ∈ H, there exists a convex decomposition

P =
K∑

k=1

λkPk , such that

1 each Pk is integer-valued, and
2 q

S
≤
∑

(i,a)∈S Pk
ia ≤ qS , for each k and S ∈ H.

Decomposability means “Every P satisfying all the given
constraints in H can be expressed as a convex combination of
integral matrices satisfying the constraints.” In other words,
any random assignment satisfying constraints in H can be
implemented as a lottery over deterministic assignments that
satisfy constraints in H.

Decomposability

Constraint structure H is universally decomposable if, for
each (q

S
, qS)S∈H and P with q

S
≤
∑

(i ,a)∈S Pia ≤ qS for all
S ∈ H, there exists a convex decomposition

P =
K∑

k=1

λkPk , such that

1 each Pk is integer-valued, and
2 q

S
≤
∑

(i,a)∈S Pk
ia ≤ qS , for each k and S ∈ H.

Decomposability means “Every P satisfying all the given
constraints in H can be expressed as a convex combination of
integral matrices satisfying the constraints.” In other words,
any random assignment satisfying constraints in H can be
implemented as a lottery over deterministic assignments that
satisfy constraints in H.

Decomposability

Constraint structure H is universally decomposable if, for
each (q

S
, qS)S∈H and P with q

S
≤
∑

(i ,a)∈S Pia ≤ qS for all
S ∈ H, there exists a convex decomposition

P =
K∑

k=1

λkPk , such that

1 each Pk is integer-valued, and
2 q

S
≤
∑

(i,a)∈S Pk
ia ≤ qS , for each k and S ∈ H.

Decomposability means “Every P satisfying all the given
constraints in H can be expressed as a convex combination of
integral matrices satisfying the constraints.” In other words,
any random assignment satisfying constraints in H can be
implemented as a lottery over deterministic assignments that
satisfy constraints in H.

Decomposability

Constraint structure H is universally decomposable if, for
each (q

S
, qS)S∈H and P with q

S
≤
∑

(i ,a)∈S Pia ≤ qS for all
S ∈ H, there exists a convex decomposition

P =
K∑

k=1

λkPk , such that

1 each Pk is integer-valued, and
2 q

S
≤
∑

(i,a)∈S Pk
ia ≤ qS , for each k and S ∈ H.

Decomposability means “Every P satisfying all the given
constraints in H can be expressed as a convex combination of
integral matrices satisfying the constraints.” In other words,
any random assignment satisfying constraints in H can be
implemented as a lottery over deterministic assignments that
satisfy constraints in H.

Decomposability

Constraint structure H is universally decomposable if, for
each (q

S
, qS)S∈H and P with q

S
≤
∑

(i ,a)∈S Pia ≤ qS for all
S ∈ H, there exists a convex decomposition

P =
K∑

k=1

λkPk , such that

1 each Pk is integer-valued, and
2 q

S
≤
∑

(i,a)∈S Pk
ia ≤ qS , for each k and S ∈ H.

Decomposability means “Every P satisfying all the given
constraints in H can be expressed as a convex combination of
integral matrices satisfying the constraints.” In other words,
any random assignment satisfying constraints in H can be
implemented as a lottery over deterministic assignments that
satisfy constraints in H.

Hierarchy

What property of the constraint structure H enables
decomposability?

H ⊆ 2N×O is a hierarchy if S ∩ S ′ = ∅ or S ⊂ S ′ or S ′ ⊂ S
for any S , S ′ ∈ H.

P =


P1a P1b P1c

P2a P2b P2c

P3a P3b P3c



Hierarchy Not a Hierarchy

Hierarchy

What property of the constraint structure H enables
decomposability?

H ⊆ 2N×O is a hierarchy if S ∩ S ′ = ∅ or S ⊂ S ′ or S ′ ⊂ S
for any S , S ′ ∈ H.

P =


P1a P1b P1c

P2a P2b P2c

P3a P3b P3c



Hierarchy

Not a Hierarchy

Hierarchy

What property of the constraint structure H enables
decomposability?

H ⊆ 2N×O is a hierarchy if S ∩ S ′ = ∅ or S ⊂ S ′ or S ′ ⊂ S
for any S , S ′ ∈ H.

P =


P1a P1b P1c

P2a P2b P2c

P3a P3b P3c


Hierarchy Not a Hierarchy

Hierarchy

What property of the constraint structure H enables
decomposability?

H ⊆ 2N×O is a hierarchy if S ∩ S ′ = ∅ or S ⊂ S ′ or S ′ ⊂ S
for any S , S ′ ∈ H.

P =


P1a P1b P1c

P2a P2b P2c

P3a P3b P3c


Hierarchy Not a Hierarchy

Hierarchy

What property of the constraint structure H enables
decomposability?

H ⊆ 2N×O is a hierarchy if S ∩ S ′ = ∅ or S ⊂ S ′ or S ′ ⊂ S
for any S , S ′ ∈ H.

P =


P1a P1b P1c

P2a P2b P2c

P3a P3b P3c


Hierarchy Not a Hierarchy

Hierarchy

What property of the constraint structure H enables
decomposability?

H ⊆ 2N×O is a hierarchy if S ∩ S ′ = ∅ or S ⊂ S ′ or S ′ ⊂ S
for any S , S ′ ∈ H.

P =


P1a P1b P1c

P2a P2b P2c

P3a P3b P3c


Hierarchy Not a Hierarchy

Hierarchy

What property of the constraint structure H enables
decomposability?

H ⊆ 2N×O is a hierarchy if S ∩ S ′ = ∅ or S ⊂ S ′ or S ′ ⊂ S
for any S , S ′ ∈ H.

P =


P1a P1b P1c

P2a P2b P2c

P3a P3b P3c


Hierarchy Not a Hierarchy

Hierarchy

What property of the constraint structure H enables
decomposability?

H ⊆ 2N×O is a hierarchy if S ∩ S ′ = ∅ or S ⊂ S ′ or S ′ ⊂ S
for any S , S ′ ∈ H.

P =


P1a P1b P1c

P2a P2b P2c

P3a P3b P3c


Hierarchy Not a Hierarchy

Decomposition Theorem

H ⊆ 2N×O is a bihierarchy if it can be partitioned into two
hierarchies.

Theorem

If H forms a bihierarchy, then it is universally decomposable.

Proof Sketch: Recognize that the set of feasible random
assignments {P : q

S
≤
∑

(i ,a)∈S Pia ≤ qS , for each S ∈ H}
forms a convex polyhedron. Any random assignment is thus a
convex combination of extreme points. Suffices to show that
the extreme points are integer-valued. This result follow from
Hoffman and Kruskal (1956) and Edmonds (1970).

More important is “constructive algorithm” that works fast.
We provide one based on a network flow method.

Decomposition Theorem

H ⊆ 2N×O is a bihierarchy if it can be partitioned into two
hierarchies.

Theorem

If H forms a bihierarchy, then it is universally decomposable.

Proof Sketch: Recognize that the set of feasible random
assignments {P : q

S
≤
∑

(i ,a)∈S Pia ≤ qS , for each S ∈ H}
forms a convex polyhedron. Any random assignment is thus a
convex combination of extreme points. Suffices to show that
the extreme points are integer-valued. This result follow from
Hoffman and Kruskal (1956) and Edmonds (1970).

More important is “constructive algorithm” that works fast.
We provide one based on a network flow method.

Decomposition Theorem

H ⊆ 2N×O is a bihierarchy if it can be partitioned into two
hierarchies.

Theorem

If H forms a bihierarchy, then it is universally decomposable.

Proof Sketch: Recognize that the set of feasible random
assignments {P : q

S
≤
∑

(i ,a)∈S Pia ≤ qS , for each S ∈ H}
forms a convex polyhedron. Any random assignment is thus a
convex combination of extreme points. Suffices to show that
the extreme points are integer-valued. This result follow from
Hoffman and Kruskal (1956) and Edmonds (1970).

More important is “constructive algorithm” that works fast.
We provide one based on a network flow method.

Decomposition Theorem

H ⊆ 2N×O is a bihierarchy if it can be partitioned into two
hierarchies.

Theorem

If H forms a bihierarchy, then it is universally decomposable.

Proof Sketch: Recognize that the set of feasible random
assignments {P : q

S
≤
∑

(i ,a)∈S Pia ≤ qS , for each S ∈ H}
forms a convex polyhedron. Any random assignment is thus a
convex combination of extreme points. Suffices to show that
the extreme points are integer-valued. This result follow from
Hoffman and Kruskal (1956) and Edmonds (1970).

More important is “constructive algorithm” that works fast.
We provide one based on a network flow method.

What can go wrong without bihierarchy?

2 goods and 2 agents,

H = {{(1, a), (1, b)}, {(1, a), (2, a)}, {(1, b), (2, a)}}, with

each constraint being one.

P =

(
0.5 0.5
0.5 0.5

)
=?

(
1 0
1

)

Lemma

If H has an odd cycle of intersecting sets, then H is not universally
decomposable.

What can go wrong without bihierarchy?

2 goods and 2 agents,

H = {{(1, a), (1, b)}, {(1, a), (2, a)}, {(1, b), (2, a)}}, with

each constraint being one.

P =

(
0.5 0.5
0.5 0.5

)
=?

(
1 0
1

)

Lemma

If H has an odd cycle of intersecting sets, then H is not universally
decomposable.

What can go wrong without bihierarchy?

2 goods and 2 agents,

H = {{(1, a), (1, b)}, {(1, a), (2, a)}, {(1, b), (2, a)}}, with

each constraint being one.

P =

(
0.5 0.5
0.5 0.5

)
=?

(
1 0
1

)

Lemma

If H has an odd cycle of intersecting sets, then H is not universally
decomposable.

What can go wrong without bihierarchy?

2 goods and 2 agents,

H = {{(1, a), (1, b)}, {(1, a), (2, a)}, {(1, b), (2, a)}}, with

each constraint being one.

P =

(
0.5 0.5
0.5 0.5

)
=?

(
1 0
1

)

Lemma

If H has an odd cycle of intersecting sets, then H is not universally
decomposable.

What can go wrong without bihierarchy?

2 goods and 2 agents,

H = {{(1, a), (1, b)}, {(1, a), (2, a)}, {(1, b), (2, a)}}, with

each constraint being one.

P =

(
0.5 0.5
0.5 0.5

)
=?

(
1 0
1

)

Lemma

If H has an odd cycle of intersecting sets, then H is not universally
decomposable.

What can go wrong without bihierarchy?

2 goods and 2 agents,

H = {{(1, a), (1, b)}, {(1, a), (2, a)}, {(1, b), (2, a)}}, with

each constraint being one.

P =

(
0.5 0.5
0.5 0.5

)
=?

(
1 0
1

)

Lemma

If H has an odd cycle of intersecting sets, then H is not universally
decomposable.

What can go wrong without bihierarchy?

2 goods and 2 agents,

H = {{(1, a), (1, b)}, {(1, a), (2, a)}, {(1, b), (2, a)}}, with

each constraint being one.

P =

(
0.5 0.5
0.5 0.5

)
=?

(
1 0
1

)

Lemma

If H has an odd cycle of intersecting sets, then H is not universally
decomposable.

What can go wrong without bihierarchy?

2 goods and 2 agents,

H = {{(1, a), (1, b)}, {(1, a), (2, a)}, {(1, b), (2, a)}}, with

each constraint being one.

P =

(
0.5 0.5
0.5 0.5

)
=?

(
1 0
1

)

Lemma

If H has an odd cycle of intersecting sets, then H is not universally
decomposable.

Necessity of Bihierarchy

Not generally but in a natural bilateral matching setting.

Theorem: Maximal domain

Suppose H contains all “rows” ({i} × O, ∀i ∈ N) and all
“columns” (N × {a}, ∀a ∈ O). If H is not bihierarchical, then H is
not universally decomposable.

In many applications, row and column constraints are present. If
this is the case, a bihierarchical structure is necessary for BvN
decomposition.

Necessity of Bihierarchy

Not generally but in a natural bilateral matching setting.

Theorem: Maximal domain

Suppose H contains all “rows” ({i} × O, ∀i ∈ N) and all
“columns” (N × {a}, ∀a ∈ O). If H is not bihierarchical, then H is
not universally decomposable.

In many applications, row and column constraints are present. If
this is the case, a bihierarchical structure is necessary for BvN
decomposition.

Necessity of Bihierarchy

Not generally but in a natural bilateral matching setting.

Theorem: Maximal domain

Suppose H contains all “rows” ({i} × O, ∀i ∈ N) and all
“columns” (N × {a}, ∀a ∈ O). If H is not bihierarchical, then H is
not universally decomposable.

In many applications, row and column constraints are present. If
this is the case, a bihierarchical structure is necessary for BvN
decomposition.

Example of a bihierarchy: Classical One to One Assignment

P =


P1a P1b P1c

P2a P2b P2c

P3a P3b P3c


The Birkhoff-von Neumann Theorem is a corollary of the
Theorem.

Example of a bihierarchy: Classical One to One Assignment

P =


P1a P1b P1c

P2a P2b P2c

P3a P3b P3c


The Birkhoff-von Neumann Theorem is a corollary of the
Theorem.

Example of a bihierarchy: Classical One to One Assignment

P =


P1a P1b P1c

P2a P2b P2c

P3a P3b P3c


The Birkhoff-von Neumann Theorem is a corollary of the
Theorem.

Example of a bihierarchy: Flexible Capacities

Suppose a and b are two programs within a school; each program

has maximum capacity of 2, and the school has maximum capacity

of 3.

P =


P1a P1b P1c

P2a P2b P2c

P3a P3b P3c



Example of a bihierarchy: Flexible Capacities

Suppose a and b are two programs within a school; each program

has maximum capacity of 2, and the school has maximum capacity

of 3.

P =


P1a P1b P1c

P2a P2b P2c

P3a P3b P3c



Example of a bihierarchy: Flexible Capacities

Suppose a and b are two programs within a school; each program

has maximum capacity of 2, and the school has maximum capacity

of 3.

P =


P1a P1b P1c

P2a P2b P2c

P3a P3b P3c



Example of a bihierarchy: Group Specific Quota

Suppose students 1 and 2 are ethnic majority, and 2 and 3 are

male. If school a has a limit on ethnic majority while school b has

a limit on male,

P =


P1a P1b P1c

P2a P2b P2c

P3a P3b P3c



Example of a bihierarchy: Group Specific Quota

Suppose students 1 and 2 are ethnic majority, and 2 and 3 are

male. If school a has a limit on ethnic majority while school b has

a limit on male,

P =


P1a P1b P1c

P2a P2b P2c

P3a P3b P3c



Example of a bihierarchy: Group Specific Quota

Suppose students 1 and 2 are ethnic majority, and 2 and 3 are

male. If school a has a limit on ethnic majority while school b has

a limit on male,

P =


P1a P1b P1c

P2a P2b P2c

P3a P3b P3c



Example of a bihierarchy: Group Specific Quota

Suppose students 1 and 2 are ethnic majority, and 2 and 3 are

male. If school a has a limit on ethnic majority while school b has

a limit on male,

P =


P1a P1b P1c

P2a P2b P2c

P3a P3b P3c



Application: Single-Unit Assignment

Social planner needs to assign at most one object to each
agent (e.g., school choice, housing allocation).

Each agent has strict preferences over O.

Some additional constraints are allowed; affirmative action
constraints, flexible capacity, etc.

Suppose constraint sets H form a bihierchy.

H contains “rows.”
There are only ceiling constraints.

Random priority (RP) mechanism: randomly order agents,
and let each agent receive the favorite remaining good
following the order, subject to the constraints described
above. Ex post efficient but not ex ant efficient.

Application: Single-Unit Assignment

Social planner needs to assign at most one object to each
agent (e.g., school choice, housing allocation).

Each agent has strict preferences over O.

Some additional constraints are allowed; affirmative action
constraints, flexible capacity, etc.

Suppose constraint sets H form a bihierchy.

H contains “rows.”
There are only ceiling constraints.

Random priority (RP) mechanism: randomly order agents,
and let each agent receive the favorite remaining good
following the order, subject to the constraints described
above. Ex post efficient but not ex ant efficient.

Application: Single-Unit Assignment

Social planner needs to assign at most one object to each
agent (e.g., school choice, housing allocation).

Each agent has strict preferences over O.

Some additional constraints are allowed; affirmative action
constraints, flexible capacity, etc.

Suppose constraint sets H form a bihierchy.

H contains “rows.”
There are only ceiling constraints.

Random priority (RP) mechanism: randomly order agents,
and let each agent receive the favorite remaining good
following the order, subject to the constraints described
above. Ex post efficient but not ex ant efficient.

Application: Single-Unit Assignment

Social planner needs to assign at most one object to each
agent (e.g., school choice, housing allocation).

Each agent has strict preferences over O.

Some additional constraints are allowed; affirmative action
constraints, flexible capacity, etc.

Suppose constraint sets H form a bihierchy.

H contains “rows.”
There are only ceiling constraints.

Random priority (RP) mechanism: randomly order agents,
and let each agent receive the favorite remaining good
following the order, subject to the constraints described
above. Ex post efficient but not ex ant efficient.

Application: Single-Unit Assignment

Social planner needs to assign at most one object to each
agent (e.g., school choice, housing allocation).

Each agent has strict preferences over O.

Some additional constraints are allowed; affirmative action
constraints, flexible capacity, etc.

Suppose constraint sets H form a bihierchy.

H contains “rows.”
There are only ceiling constraints.

Random priority (RP) mechanism: randomly order agents,
and let each agent receive the favorite remaining good
following the order, subject to the constraints described
above. Ex post efficient but not ex ant efficient.

Inefficiency of RP

Let N = {1, 2, 3, 4}, O = {a, b, c , ø}. Each good has quota of one,
and only two out of three goods can actually be produced.
1 and 2 like a, b, ø (in this order),
3 and 4 like c , b, ø.
RP produces random assignment:

RP =


5/12 1/12 0 1/2
5/12 1/12 0 1/2

0 1/12 5/12 1/2
0 1/12 5/12 1/2

 .

Everyone prefers

P ′ =


1/2 0 0 1/2
1/2 0 0 1/2

0 0 1/2 1/2
0 0 1/2 1/2

 .

Inefficiency of RP

Let N = {1, 2, 3, 4}, O = {a, b, c , ø}. Each good has quota of one,
and only two out of three goods can actually be produced.
1 and 2 like a, b, ø (in this order),
3 and 4 like c , b, ø.
RP produces random assignment:

RP =


5/12 1/12 0 1/2
5/12 1/12 0 1/2

0 1/12 5/12 1/2
0 1/12 5/12 1/2

 .

Everyone prefers

P ′ =


1/2 0 0 1/2
1/2 0 0 1/2

0 0 1/2 1/2
0 0 1/2 1/2

 .

Inefficiency of RP

Let N = {1, 2, 3, 4}, O = {a, b, c , ø}. Each good has quota of one,
and only two out of three goods can actually be produced.
1 and 2 like a, b, ø (in this order),
3 and 4 like c , b, ø.
RP produces random assignment:

RP =


5/12 1/12 0 1/2
5/12 1/12 0 1/2

0 1/12 5/12 1/2
0 1/12 5/12 1/2

 .

Everyone prefers

P ′ =


1/2 0 0 1/2
1/2 0 0 1/2

0 0 1/2 1/2
0 0 1/2 1/2

 .

Inefficiency of RP

Let N = {1, 2, 3, 4}, O = {a, b, c , ø}. Each good has quota of one,
and only two out of three goods can actually be produced.
1 and 2 like a, b, ø (in this order),
3 and 4 like c , b, ø.
RP produces random assignment:

RP =


5/12 1/12 0 1/2
5/12 1/12 0 1/2

0 1/12 5/12 1/2
0 1/12 5/12 1/2

 .

Everyone prefers

P ′ =


1/2 0 0 1/2
1/2 0 0 1/2

0 0 1/2 1/2
0 0 1/2 1/2

 .

Probabilistic Serial Mechanism (Bogomolnaia and Moulin)

The agents regard the goods as “divisible” in probability
units. Time runs continuously from 0 to 1, and each agent
simultaneously “eats” her favorite “available” good at unit
speed at each moment of time.

The end outcome is a random assignment, implementable by
BvN.

The random assignment is “ordinally efficient,” and “envy
free.”

Probabilistic Serial Mechanism (Bogomolnaia and Moulin)

The agents regard the goods as “divisible” in probability
units. Time runs continuously from 0 to 1, and each agent
simultaneously “eats” her favorite “available” good at unit
speed at each moment of time.

The end outcome is a random assignment, implementable by
BvN.

The random assignment is “ordinally efficient,” and “envy
free.”

Probabilistic Serial Mechanism (Bogomolnaia and Moulin)

The agents regard the goods as “divisible” in probability
units. Time runs continuously from 0 to 1, and each agent
simultaneously “eats” her favorite “available” good at unit
speed at each moment of time.

The end outcome is a random assignment, implementable by
BvN.

The random assignment is “ordinally efficient,” and “envy
free.”

Probabilistic Serial Mechanism (Bogomolnaia and Moulin)

The agents regard the goods as “divisible” in probability
units. Time runs continuously from 0 to 1, and each agent
simultaneously “eats” her favorite “available” good at unit
speed at each moment of time.

The end outcome is a random assignment, implementable by
BvN.

The random assignment is “ordinally efficient,” and “envy
free.”

Generalizing the Probabilistic Serial Mechanism

As before: time runs continuously from 0 to 1, and each agent
“eats” her favorite “available” good at speed one at each
moment of time.

But, modify “available”: we say that object a is “available” to
agent i if and only if the total amount of probability shares
eaten away within S is less than the quota qS for every
constraint set S 3 (i , a).

The end outcome is a random assignment that satisfies
bihierarchical constraints. Therefore it is implementable.

We show: The assignment is ordinally efficient, and “feasible”
envy free.

May enhance the applicability of PS.

Generalizing the Probabilistic Serial Mechanism

As before: time runs continuously from 0 to 1, and each agent
“eats” her favorite “available” good at speed one at each
moment of time.

But, modify “available”: we say that object a is “available” to
agent i if and only if the total amount of probability shares
eaten away within S is less than the quota qS for every
constraint set S 3 (i , a).

The end outcome is a random assignment that satisfies
bihierarchical constraints. Therefore it is implementable.

We show: The assignment is ordinally efficient, and “feasible”
envy free.

May enhance the applicability of PS.

Generalizing the Probabilistic Serial Mechanism

As before: time runs continuously from 0 to 1, and each agent
“eats” her favorite “available” good at speed one at each
moment of time.

But, modify “available”: we say that object a is “available” to
agent i if and only if the total amount of probability shares
eaten away within S is less than the quota qS for every
constraint set S 3 (i , a).

The end outcome is a random assignment that satisfies
bihierarchical constraints. Therefore it is implementable.

We show: The assignment is ordinally efficient, and “feasible”
envy free.

May enhance the applicability of PS.

Generalizing the Probabilistic Serial Mechanism

As before: time runs continuously from 0 to 1, and each agent
“eats” her favorite “available” good at speed one at each
moment of time.

But, modify “available”: we say that object a is “available” to
agent i if and only if the total amount of probability shares
eaten away within S is less than the quota qS for every
constraint set S 3 (i , a).

The end outcome is a random assignment that satisfies
bihierarchical constraints. Therefore it is implementable.

We show: The assignment is ordinally efficient, and “feasible”
envy free.

May enhance the applicability of PS.

Generalizing the Probabilistic Serial Mechanism

As before: time runs continuously from 0 to 1, and each agent
“eats” her favorite “available” good at speed one at each
moment of time.

But, modify “available”: we say that object a is “available” to
agent i if and only if the total amount of probability shares
eaten away within S is less than the quota qS for every
constraint set S 3 (i , a).

The end outcome is a random assignment that satisfies
bihierarchical constraints. Therefore it is implementable.

We show: The assignment is ordinally efficient, and “feasible”
envy free.

May enhance the applicability of PS.

Generalizing Hylland Zeckhauser

The Hylland Zeckhauser mechanism produces competitive
equilibrium outcome in random assignment in one-to-one
assignment. We generalize the mechanism to environments in
which

agents demand arbitrary multiple units with additively
separable preferences over objects

agent faces constraints over hierarchical sets, e.g., in course
allocation

Scheduling constraints: “no two classes that meet at the same
time,” or
Curricular constraints: “no more than two classes in finance”

Generalizing Hylland Zeckhauser

The Hylland Zeckhauser mechanism produces competitive
equilibrium outcome in random assignment in one-to-one
assignment. We generalize the mechanism to environments in
which

agents demand arbitrary multiple units with additively
separable preferences over objects

agent faces constraints over hierarchical sets, e.g., in course
allocation

Scheduling constraints: “no two classes that meet at the same
time,” or
Curricular constraints: “no more than two classes in finance”

Generalizing Hylland Zeckhauser

The Hylland Zeckhauser mechanism produces competitive
equilibrium outcome in random assignment in one-to-one
assignment. We generalize the mechanism to environments in
which

agents demand arbitrary multiple units with additively
separable preferences over objects

agent faces constraints over hierarchical sets, e.g., in course
allocation

Scheduling constraints: “no two classes that meet at the same
time,” or
Curricular constraints: “no more than two classes in finance”

Generalizing Hylland Zeckhauser

The Hylland Zeckhauser mechanism produces competitive
equilibrium outcome in random assignment in one-to-one
assignment. We generalize the mechanism to environments in
which

agents demand arbitrary multiple units with additively
separable preferences over objects

agent faces constraints over hierarchical sets, e.g., in course
allocation

Scheduling constraints: “no two classes that meet at the same
time,” or
Curricular constraints: “no more than two classes in finance”

Generalizing Hylland Zeckhauser

The Hylland Zeckhauser mechanism produces competitive
equilibrium outcome in random assignment in one-to-one
assignment. We generalize the mechanism to environments in
which

agents demand arbitrary multiple units with additively
separable preferences over objects

agent faces constraints over hierarchical sets, e.g., in course
allocation

Scheduling constraints: “no two classes that meet at the same
time,” or
Curricular constraints: “no more than two classes in finance”

Application: Course Allocation

Course-allocation mechanisms currently used have flaws in
fairness and efficiency (Budish and Cantillon, 2009).

For the case of simple additive-separable preferences, the HZ
generalization is attractive: efficient, interim envy free, and
strategyproof in the large economy.

Even nonlinear preferences, such as diminishing marginal
utilities, can be encoded by the judicious design of message
spaces: Milgrom (2010)’s assignment messages.

Application: Course Allocation

Course-allocation mechanisms currently used have flaws in
fairness and efficiency (Budish and Cantillon, 2009).

For the case of simple additive-separable preferences, the HZ
generalization is attractive: efficient, interim envy free, and
strategyproof in the large economy.

Even nonlinear preferences, such as diminishing marginal
utilities, can be encoded by the judicious design of message
spaces: Milgrom (2010)’s assignment messages.

Application: Course Allocation

Course-allocation mechanisms currently used have flaws in
fairness and efficiency (Budish and Cantillon, 2009).

For the case of simple additive-separable preferences, the HZ
generalization is attractive: efficient, interim envy free, and
strategyproof in the large economy.

Even nonlinear preferences, such as diminishing marginal
utilities, can be encoded by the judicious design of message
spaces: Milgrom (2010)’s assignment messages.

Application: Multi-Unit Assignment with Ex Post Fairness

Suppose agents may be assigned to multiple objects, and they
have linear preferences in the values of assigned objects, {via}.
There are multiple ways to implement a random assignment,
some less fair than others.
Example: N = {1, 2}; O = {a, b, c, d}, both have preferences
a � b � c � d ; each agent demands 2 units.
A random assignment

P =

(
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5

)
can be decomposed as

=
1

2

(
1 1 0 0
0 0 1 1

)
+

1

2

(
0 0 1 1
1 1 0 0

)
can also be decomposed as

=
1

2

(
1 0 0 1
0 1 1 0

)
+

1

2

(
0 1 1 0
1 0 0 1

)

Application: Multi-Unit Assignment with Ex Post Fairness

Suppose agents may be assigned to multiple objects, and they
have linear preferences in the values of assigned objects, {via}.
There are multiple ways to implement a random assignment,
some less fair than others.
Example: N = {1, 2}; O = {a, b, c, d}, both have preferences
a � b � c � d ; each agent demands 2 units.
A random assignment

P =

(
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5

)
can be decomposed as

=
1

2

(
1 1 0 0
0 0 1 1

)
+

1

2

(
0 0 1 1
1 1 0 0

)
can also be decomposed as

=
1

2

(
1 0 0 1
0 1 1 0

)
+

1

2

(
0 1 1 0
1 0 0 1

)

Application: Multi-Unit Assignment with Ex Post Fairness

Suppose agents may be assigned to multiple objects, and they
have linear preferences in the values of assigned objects, {via}.
There are multiple ways to implement a random assignment,
some less fair than others.
Example: N = {1, 2}; O = {a, b, c, d}, both have preferences
a � b � c � d ; each agent demands 2 units.
A random assignment

P =

(
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5

)
can be decomposed as

=
1

2

(
1 1 0 0
0 0 1 1

)
+

1

2

(
0 0 1 1
1 1 0 0

)
can also be decomposed as

=
1

2

(
1 0 0 1
0 1 1 0

)
+

1

2

(
0 1 1 0
1 0 0 1

)

Application: Multi-Unit Assignment with Ex Post Fairness

Suppose agents may be assigned to multiple objects, and they
have linear preferences in the values of assigned objects, {via}.
There are multiple ways to implement a random assignment,
some less fair than others.
Example: N = {1, 2}; O = {a, b, c, d}, both have preferences
a � b � c � d ; each agent demands 2 units.
A random assignment

P =

(
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5

)
can be decomposed as

=
1

2

(
1 1 0 0
0 0 1 1

)
+

1

2

(
0 0 1 1
1 1 0 0

)
can also be decomposed as

=
1

2

(
1 0 0 1
0 1 1 0

)
+

1

2

(
0 1 1 0
1 0 0 1

)

Application: Multi-Unit Assignment with Ex Post Fairness

Suppose agents may be assigned to multiple objects, and they
have linear preferences in the values of assigned objects, {via}.
There are multiple ways to implement a random assignment,
some less fair than others.
Example: N = {1, 2}; O = {a, b, c, d}, both have preferences
a � b � c � d ; each agent demands 2 units.
A random assignment

P =

(
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5

)
can be decomposed as

=
1

2

(
1 1 0 0
0 0 1 1

)
+

1

2

(
0 0 1 1
1 1 0 0

)
can also be decomposed as

=
1

2

(
1 0 0 1
0 1 1 0

)
+

1

2

(
0 1 1 0
1 0 0 1

)

Application: Multi-Unit Assignment with Ex Post Fairness

Suppose agents may be assigned to multiple objects, and they
have linear preferences in the values of assigned objects, {via}.
There are multiple ways to implement a random assignment,
some less fair than others.
Example: N = {1, 2}; O = {a, b, c, d}, both have preferences
a � b � c � d ; each agent demands 2 units.
A random assignment

P =

(
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5

)
can be decomposed as

=
1

2

(
1 1 0 0
0 0 1 1

)
+

1

2

(
0 0 1 1
1 1 0 0

)
can also be decomposed as

=
1

2

(
1 0 0 1
0 1 1 0

)
+

1

2

(
0 1 1 0
1 0 0 1

)

Application: Multi-Unit Assignment with Ex Post Fairness

Suppose agents may be assigned to multiple objects, and they
have linear preferences in the values of assigned objects, {via}.
There are multiple ways to implement a random assignment,
some less fair than others.
Example: N = {1, 2}; O = {a, b, c, d}, both have preferences
a � b � c � d ; each agent demands 2 units.
A random assignment

P =

(
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5

)
can be decomposed as

=
1

2

(
1 1 0 0
0 0 1 1

)
+

1

2

(
0 0 1 1
1 1 0 0

)
can also be decomposed as

=
1

2

(
1 0 0 1
0 1 1 0

)
+

1

2

(
0 1 1 0
1 0 0 1

)

Application: Multi-Unit Assignment with Ex Post Fairness

Suppose agents may be assigned to multiple objects, and they
have linear preferences in the values of assigned objects, {via}.
There are multiple ways to implement a random assignment,
some less fair than others.
Example: N = {1, 2}; O = {a, b, c, d}, both have preferences
a � b � c � d ; each agent demands 2 units.
A random assignment

P =

(
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5

)
can be decomposed as

=
1

2

(
1 1 0 0
0 0 1 1

)
+

1

2

(
0 0 1 1
1 1 0 0

)
can also be decomposed as

=
1

2

(
1 0 0 1
0 1 1 0

)
+

1

2

(
0 1 1 0
1 0 0 1

)

Application: Multi-Unit Assignment with Ex Post Fairness

Suppose agents may be assigned to multiple objects, and they
have linear preferences in the values of assigned objects, {via}.
There are multiple ways to implement a random assignment,
some less fair than others.
Example: N = {1, 2}; O = {a, b, c, d}, both have preferences
a � b � c � d ; each agent demands 2 units.
A random assignment

P =

(
0.5 0.5 0.5 0.5
0.5 0.5 0.5 0.5

)
can be decomposed as

=
1

2

(
1 1 0 0
0 0 1 1

)
+

1

2

(
0 0 1 1
1 1 0 0

)
can also be decomposed as

=
1

2

(
1 0 0 1
0 1 1 0

)
+

1

2

(
0 1 1 0
1 0 0 1

)

Application: Multi-Unit Assignment with Ex Post Fairness

Theorem: One-sided utility guarantee

Given any random assignment P = (Pia), there exists a BvN
decomposition of P such that, for each i ∈ N, each ex post
assignment in the decomposition gives i the expected utility within
∆i := max{via − vib|a, b ∈ O,Pia,Pib /∈ Z} of that under P.

Proof Idea

Add a hierarchical set of “artificial” constraints in a way that
bounds the extent to which each agent’s utility can vary over
different resolutions of the random assignment.

a b c d

1 0.5 0.5 0.5 0.5

2 0.5 0.5 0.5 0.5

This method works for more general (heterogenous
preferences) cases.

Proof Idea

Add a hierarchical set of “artificial” constraints in a way that
bounds the extent to which each agent’s utility can vary over
different resolutions of the random assignment.

a b c d

1 0.5 0.5 0.5 0.5

2 0.5 0.5 0.5 0.5

This method works for more general (heterogenous
preferences) cases.

Proof Idea

Add a hierarchical set of “artificial” constraints in a way that
bounds the extent to which each agent’s utility can vary over
different resolutions of the random assignment.

a b c d

1 0.5 0.5 0.5 0.5

2 0.5 0.5 0.5 0.5

This method works for more general (heterogenous
preferences) cases.

Proof Idea

Add a hierarchical set of “artificial” constraints in a way that
bounds the extent to which each agent’s utility can vary over
different resolutions of the random assignment.

a b c d

1 0.5 0.5 0.5 0.5

2 0.5 0.5 0.5 0.5

This method works for more general (heterogenous
preferences) cases.

Application: Two-Sided Matching

Theorem: Two-sided utility guarantee

Suppose both N and O are agents with strict preferences on the
other side. Given any random assignment P = [Pia], there exists a
BvN decomposition of P such that, for each i ∈ N and a ∈ O,
each ex post assignment in the decomposition gives i the expected
utility within ∆i := max{via − vib|a, b ∈ O,Pia,Pib /∈ Z} of that
under P, and a ∈ O the expected utility within
∆a := max{via − vja|i , j ∈ N,Pia,Pja /∈ Z} of that under P.

Example: Interleague Play Matchup Design

Suppose 8 (baseball) teams in two leagues, NL and AL, 4 teams in
each league, must engage in interleague play — 6 games for each
team against the teams in the other league. Wish to design
equitable matchups.
List the teams in order of past performance (win/loss).

AL
a b c d

NL

1 1.5 1.5 1.5 1.5

2 1.5 1.5 1.5 1.5

3 1.5 1.5 1.5 1.5

4 1.5 1.5 1.5 1.5

Example: Interleague Play Matchup Design

Suppose 8 (baseball) teams in two leagues, NL and AL, 4 teams in
each league, must engage in interleague play — 6 games for each
team against the teams in the other league. Wish to design
equitable matchups.
List the teams in order of past performance (win/loss).

AL
a b c d

NL

1 1.5 1.5 1.5 1.5

2 1.5 1.5 1.5 1.5

3 1.5 1.5 1.5 1.5

4 1.5 1.5 1.5 1.5

Example: Interleague Play Matchup Design

Suppose 8 (baseball) teams in two leagues, NL and AL, 4 teams in
each league, must engage in interleague play — 6 games for each
team against the teams in the other league. Wish to design
equitable matchups.
List the teams in order of past performance (win/loss).

AL
a b c d

NL

1 1.5 1.5 1.5 1.5

2 1.5 1.5 1.5 1.5

3 1.5 1.5 1.5 1.5

4 1.5 1.5 1.5 1.5

Example: Interleague Play Matchup Design

Suppose 8 (baseball) teams in two leagues, NL and AL, 4 teams in
each league, must engage in interleague play — 6 games for each
team against the teams in the other league. Wish to design
equitable matchups.
List the teams in order of past performance (win/loss).

AL
a b c d

NL

1 1.5 1.5 1.5 1.5

2 1.5 1.5 1.5 1.5

3 1.5 1.5 1.5 1.5

4 1.5 1.5 1.5 1.5

Example: Interleague Play Matchup Design

Suppose 8 (baseball) teams in two leagues, NL and AL, 4 teams in
each league, must engage in interleague play — 6 games for each
team against the teams in the other league. Wish to design
equitable matchups.
List the teams in order of past performance (win/loss).

AL
a b c d

NL

1 1.5 1.5 1.5 1.5

2 1.5 1.5 1.5 1.5

3 1.5 1.5 1.5 1.5

4 1.5 1.5 1.5 1.5

One Possible Outcome

AL
a b c d

NL

1 2 1 1 2

2 1 2 2 1

3 1 2 2 1

4 2 1 1 2

Beyond Bilateral Assignment

The methodology can be extended to a general hypergraph
X = (X ,H) where X is a finite set and H is a collection of
subsets from X .

But we obtain a pair of impossibility of decomposition in
1 Matching with more than 2-sides.
2 One-sided (“roommate”) matching.

Beyond Bilateral Assignment

The methodology can be extended to a general hypergraph
X = (X ,H) where X is a finite set and H is a collection of
subsets from X .

But we obtain a pair of impossibility of decomposition in
1 Matching with more than 2-sides.
2 One-sided (“roommate”) matching.

Beyond Bilateral Assignment

The methodology can be extended to a general hypergraph
X = (X ,H) where X is a finite set and H is a collection of
subsets from X .

But we obtain a pair of impossibility of decomposition in
1 Matching with more than 2-sides.
2 One-sided (“roommate”) matching.

Beyond Bilateral Assignment

The methodology can be extended to a general hypergraph
X = (X ,H) where X is a finite set and H is a collection of
subsets from X .

But we obtain a pair of impossibility of decomposition in
1 Matching with more than 2-sides.
2 One-sided (“roommate”) matching.

Beyond Bilateral Assignment

The methodology can be extended to a general hypergraph
X = (X ,H) where X is a finite set and H is a collection of
subsets from X .

But we obtain a pair of impossibility of decomposition in
1 Matching with more than 2-sides.
2 One-sided (“roommate”) matching.

Conclusion

We generalize the RA method by identifying most realistic
constraint structure that guarantees implementation.

We show how the method can be applied to produce desirable
random allocations in a variety of settings including single- and
multi-unit demand assignment as well as two-sided matching.

Conclusion

We generalize the RA method by identifying most realistic
constraint structure that guarantees implementation.

We show how the method can be applied to produce desirable
random allocations in a variety of settings including single- and
multi-unit demand assignment as well as two-sided matching.

Conclusion

We generalize the RA method by identifying most realistic
constraint structure that guarantees implementation.

We show how the method can be applied to produce desirable
random allocations in a variety of settings including single- and
multi-unit demand assignment as well as two-sided matching.

