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Strategyproofness in Market Design

I Strategyproofness (SP) � reporting your preferences truthfully
is a dominant strategy � is perhaps the predominant notion of
incentives in market design

I Frequently imposed as a theoretical design requirement, across
a wide variety of auction, assignment and matching problems

I Explicit role in recent real-world reforms in school choice,
kidney exchange, two-sided matching (Roth, 2008)

I Many reasons why SP is so heavily emphasized relative to
Bayesian or Nash implementation:

1. Wilson doctrine (Bergemann Morris, 2005)
2. Strategically simple for participants (Fudenberg Tirole, 1991)
3. SP as fairness: unsophisticated players are not disadvantaged

(Friedman 1991, Pathak Sonmez 2008)
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The Limits of SP in Market Design

However, in numerous market design contexts, impossibility
theorems indicate that SP severely limits what is possible

I General equilibrium / Walrasian mechanism: Hurwicz's (1972)
impossibility theorem

I Stable matching: Roth's (1982) impossibility theorem

I Multi-unit assignment: Papai's (2001) and Ehlers-Klaus's
(2003) dictatorship theorems

I School choice: Abdulkadiro§lu, Pathak and Roth's (2009)
impossibility theorem

I Quasi-linear setting: Green-La�ont's (1977) VCG theorem, in
light of Ausubel-Milgrom (2006)

I Many, many others

Takeaway: SP may be attractive, but it is expensive!
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This Paper

Goal: propose a new criterion of approximate strategyproofness
and show that it is a useful second-best

Strategyproof in the Large (SP-L): for any agent, any
full-support iid probability distribution of the other agents' reports,
and any ε > 0, in a large enough market the agent maximizes his
expected payo� to within ε by reporting his preferences truthfully.

I Heuristically: SP-L requires that an agent who regards a
mechanism's �prices� as exogenous to her report can do no
better than report truthfully

I Could be traditional prices (e.g. auction) or price-like statistics
(e.g. matching)

I Positioning �in between� approx SP and approx Bayes-Nash

I Weaker than approximate SP: any full-support probability
distribution of opponent reports, rather than any realization

I Stronger than approximate Bayes Nash, which assumes
common knowledge of the true probability distribution.
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This Paper
Argument for SP-L as a second-best:

1. In large markets, SP-L approximates many of the formal
advantages of SP over Bayes-Nash or Nash implementation

I Wilson doctrine, strategic simplicity, fairness

2. Classi�cation of non-SP mechanisms supports SP-L
I Organizes Friedman on auctions, Roth on matching
I Organizes theory literature on approx IC in large markets
I Empirical evidence: It is mechanisms that not only are not SP

but that are not even SP-L that have problems in practice

3. Main theory result: in large markets, SP-L is in a certain sense
costless to satisfy relative to Bayes-Nash or Nash

I Key conditions: �nite type and outcome spaces, private values,
(semi)-anonymity, (quasi)-continuity

I Proof is by construction: given a mechanism with Bayes-Nash
equilibria, construct an SP-L mechanism that implements
approximately the same outcomes

Overall: SP-L approximates the bene�ts of SP, while being
approximately costless to impose
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Problem Manipulable in the Large SP-L

Multi-Unit

Auctions
Pay-As-Bid Uniform Price

Single-Unit

Assignment
Boston Mechanism

Probabilistic Serial

HZ Pseudomarket

Multi-Unit

Assignment

Bidding Points Auction

HBS Draft

CEEI

Generalized HZ

Matching Priority Match Deferred Acceptance

Other
Double Auctions

Walrasian Mechanism

Observations

I Organizes Milton Friedman on auctions, Al Roth on matching

I Extant theory argument for Approx IC in large markets �> SP-L

I Manipulable in the Large �> Empirical Evidence of Problems in Practice

I We would not get this classi�cation with ε-SP: too demanding
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Roadmap

I Introduction

I Environment

I Strategyproof in the Large

I Classi�cation of non-SP Mechanisms

I Constructing SP-L Mechanisms

I Discussion and Extensions

I Conclusion



Preliminaries

I Finite outcome space, X0, with X = ∆X0

I E.g. consumption bundle (+ transfer), school, match partner

I Finite type space, T . For each ti ∈ T there is a vNM utility
function uti : X → [0, 1]

I Preferences are private values

I For each market size n ∈ N, there is an arbitrary set
Yn ⊆ (X0)n of feasible allocations in an economy with n agents

I E.g.: capacity of each object in X0 grows linearly with n
I Notice: X0 held �xed as n grows (T as well)

I A Mechanism consists of a �nite action space A, and a
sequence (Φn)n∈N of allocation functions

Φn : An → ∆((X0)n)

each of which satis�es feasibility
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Anonymity

I We limit attention to mechanisms that are anonymous

I Each agent's outcome is a common function of her own action
and the distribution of all actions

I More formally: each function Φn(·) is invariant to permutations

I Analysis generalizes to semi-anonymous mechanisms as de�ned
in Kalai (2004)

I Finite set of groups
I Each agent's outcome is a function of

I her own action
I what group she belongs to
I the distribution of actions within each group
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Limit Mechanisms

I Given anonymity, we can think about mechanisms from the
perspective of a generic agent i

I Let φn(ai ,m) be the random allocation agent i gets under
mechanism {(Φn)n∈N,A} when

I There are n agents total
I Agent i plays action ai
I The other n− 1 agents play iid according to action distribution

m ∈ ∆A (�ex interim�)

φn(ai ,m) =
∑
a−i

Φn
i (ai , a−i ) · Pr(a−i |a−i ∼ iid(m)) (1)

I The function φ∞ : A×∆A→ X is the limit of mechanism
{(Φn)N,A} if, for all ai , m:

φ∞(ai ,m) = lim
n→∞

φn(ai ,m)
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The randomness in our de�nition of the limit is useful for two
reasons, one technical and one substantive:

1. Well de�ned for any m ∈ ∆A, not just rationals

2. Any speci�c empirical distribution of opponent play becomes
increasingly rare as the market grows large

I Example: A = {Heads,Tails}, m = 0.5,

I Expected number of Heads is of course n
2

I But likelihood of exactly n
2
Heads goes to zero as n→∞

I Economic interpretation: so long as being pivotal is a �knife
edge� event � e.g., exactly n

2 Heads is the knife edge � agents
will regard the probability of being pivotal as zero in the
large-market limit

I Allows us to think of m as encoding prices (or price-like
statistics) which are exogenous from the perspective of each
agent

I Note role of full support
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I Most (if not all?) practical market design mechanisms have
limits as we have de�ned them

I But it is very easy to construct examples that do not.

I E.g., if a mechanism behaves like a uniform-price auction when
n is even and like a pay-as-bid auction when n is odd it will not
have a limit

I From here forward we limit attention to mechanisms that have
limits
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Strategyproofness in the Large

I Consider direct mechanisms, A = T .

I Mechanism {(Φn)N,T} is strategyproof (SP) if for all ti , t ′i
in T , all n and t−i in T n−1

uti [Φ
n
i (ti , t−i )] ≥ uti [Φ

n
i (t ′i , t−i )]

I Mechanism {(Φn)N,T} is strategyproof in the large (SP-L)
if for any ti , t

′
i in T , and any full support distribution of types

m ∈ ∆T
uti [φ

∞(ti ,m)] ≥ uti [φ
∞(t ′i ,m)]

I Else, the mechanism is manipulable in the large.
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SP-L vs. Related Concepts

I SP-L: for any ti , t
′
i , m

uti [φ
∞(ti ,m)] ≥ uti [φ

∞(t ′i ,m)]

I SP-L (alt. statement): for any ti , t
′
i , m, and any ε > 0,

there exists n0 such that if n > n0 we have

uti [φ
n(ti ,m)] ≥ uti [φ

n(t ′i ,m)]− ε.

I Approximate Bayes-Nash: for the true prior µ0 ∈ ∆T , any
ti , t

′
i , and any ε > 0, there exists n0 such that if n > n0 we

have
uti [φ

n(ti , µ0)] ≥ uti [φ
n(t ′i , µ0)]− ε.

I Approximate SP: for any ti , t
′
i , and any ε > 0, there exists n0

such that if n > n0, for any t−i ∈ T n−1, we have
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n
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n
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Formal Appeal of SP-L
SP-L: for any ti , t ′i , m : uti [φ

∞(ti ,m)] ≥ uti [φ
∞(t ′i ,m)].

1. Wilson Doctrine

I Bergemann and Morris (2005): agents' behavior and hence
mechanism outcomes should be insensitive to beliefs

I SP mechanisms comply exactly: truthful play is exactly
optimal for any beliefs

I SP-L mechanisms comply approximately: truthful play is
approximately optimal for a wide range of beliefs

2. Strategic Simplicity

I For any full-support beliefs m, and any cost c > 0 of
calculating an optimal response, in a large enough market it is
optimal to simply report truthfully and avoid the cost c

3. Fairness to Unsophisticated Players

I For any full-support distribution of play m, and any cost c > 0,
in a large enough market the cost of being non-sophisticated,
and just reporting truthfully, is less than c
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3. Relate to extant theory literature on large markets

4. Relate to extant empirics literature on manipulability
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Example: Multi-Unit Auctions

I Neither uniform-price nor pay-as-bid auction is SP (Ausubel
and Cramton, 2002)

I We will show that uniform-price auction is SP-L, while
pay-as-bid is Manipulable in the Large

I Example illustrates several aspects of the de�nition of SP-L, in
particular

I Ex-interim as opposed to ex-post perspective to manipulations
I Full support assumption



Example: Multi-Unit Auctions

Basic setup:

I There are kn units of a homogeneous good, with k ∈ Z+.

I To simplify notation, we assume that agents' preferences take
the form of linear utility functions, up to a capacity limit.

I Speci�cally, each agent i 's type ti consists of a per-unit value
vi and a maximum capacity qi , with V = {1, . . . , v̄} the set of
possible values, Q = {1, . . . , q̄} the set of possible capacity
limits, and T = V × Q.

I Set of outcomes is given by X0 = (V × Q) ∪ ∅, with an
outcome consisting of a per-unit payment and quantity.

I Bids consist of a per-unit value and a max capacity, so the
action set A = T



Uniform-Price Auction: Finite

I Given a vector of n reports t, let D(p; t) denote demand at
price p. The market clearing price is:

p∗(t) = max{p ∈ V :
D(p; t)

n
≥ k}.

I The uniform-price auction allocates each bidder i her
demanded quantity at p∗(t), with the exception that bids with
vi = p∗(t) are rationed with equal probability. Formally, Φn

i (t)
allocates according to

Reported Value Expected Number of Units
vi < p∗(t) 0
vi = p∗(t) r̄ · qi
vi > p∗(t) qi

and all winning bidders pay p∗(t) per unit they receive. The
rationing constant r̄ is set to clear the market
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Uniform-Price Auction: Large-Market Limit

I Let ρ∗(m) denote the price that clears supply and average
demand given bid distribution m ∈ ∆T :

ρ∗(m) = max{p ∈ V : E [D(p; ti )|ti ∼ m] ≥ k}.
I Generic case: expected demand at price ρ∗(m) strictly

exceeds supply, that is,

E [D(ρ∗(m); ti )|ti ∼ m] > k .

I In this case, as the market grows large, the realized price will
be equal to ρ∗(m) with probability converging to one. Limit
mechanism allocates each bidder their demand at ρ∗(m), again
with rationing. Formally, φ∞(ti ,m) gives player i

Reported Value Expected Number of Units
vi < ρ∗(m) 0
vi = ρ∗(m) r̄ · qi
vi > ρ∗(m) qi

at a per unit price of ρ∗(m).
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Knife-Edge Case

I There is also a �knife-edge� case, in which expected demand at
price ρ∗(m) is exactly equal to supply, that is,

E [D(ρ∗(m); ti )|ti ∼ m] = k

I In this case, price is stochastic even in the large-market limit

I Given large n, the realized per-capita demand at price ρ∗(m) is

I weakly greater than per-capita supply k with probability of
about 1

2

I strictly smaller than per-capita supply k with probability of
about 1

2
.

I Therefore, the price in our limit will be ρ∗(m) with probability
of 1

2 , and ρ
∗(m)− 1 with probability of 1

2 .

I Key point: even though the price is sometimes ρ∗(m) and
sometimes ρ∗(m)− 1, the probability that bidder i is pivotal
converges to zero



The Uniform-Price Auction is SP-L

I The argument that the uniform-price auction is SP-L is now
straightforward

I Choose any type ti , and any full support distribution m
I The description of φ∞ above implies truthful reporting is a

dominant strategy in our limit

I Note: argument would not go through if

I We required that truthful reporting is optimal for any
realization of opponent reports

I We relaxed full support (Swinkels 2001 example)



Pay-as-Bid Auction

I Exactly the same allocation function as uniform-price auction

I Di�erence: winning bidders pay their bid, not the market
clearing price

I Clearly, bidders bene�t from misreporting, even in the limit

I Given distribution m, limit price ρ∗(m), a bidder of type
ti = (vi , qi ) with vi > ρ∗(m) + 1 strictly prefers to misreport as
t ′i = (ρ∗(m) + 1, qi )

I Hence, the pay-as-bid auction is not SP-L.

I Notice that ti 's optimal misreport depends on m, and that an
unsophisticated bidder who bids truthfully can su�er a large
loss relative to optimal behavior.

I Hence, in contrast to the uniform-price auction, the pay-as-bid
auction is neither strategically simple nor fair to
unsophisticated bidders.
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Friedman (1991): �you do not have to be a specialist� to
�gure out how to participate in the uniform price auction,
because you can just indicate �the maximum amount you
are willing to pay for di�erent quantities ... if you bid a
higher price [than the market clearing price], you do not
lose as you do under the current [pay-as-bid] method.�



Obtaining the Classi�cation
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Obtaining the Classi�cation

I To show that a mechanism is not SP-L: su�ces to produce an
example of a pro�table manipulation in the limit, as we did for
pay-as-bid

I Relatively straightforward for each of the mechanisms in the
table (App. B)

I To show that a mechanism is SP-L, we provide two su�cient
conditions

I Condition 1: Envy freeness

I A direct mechanism {(Φn)N,T} is envy-free (EF) if, for all i ,
j , n, t:

uti [Φ
n
i (t)] ≥ uti [Φ

n
j (t)].

I Proposition: EF→SP-L

I This condition covers most of the mechanisms in the table
(including Uniform-Price Auctions)
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EF→SP-L: Idea of Proof

I Decompose the gain to type ti from misreporting as tj as

1. Gain from receiving tj 's bundle, holding �xed the realized
empirical distribution of types

2. Gain from a�ecting the distribution of the realized empirical
distribution of types

I Envy-Freeness directly implies that (1) is non-positive (so long
as the realized empirical has full support, which has probability
going to one)

I A probabilistic argument establishes that (2) becomes
negligible in large markets

I Relies on full-support and iid: else, there could be a realized
empirical where agent i single-handedly a�ects the probability
by a non-vanishing amount (e.g. the probability that zero
players report tj)

I Relies on ex-interim perspective of SP-L: for instance,
uniform-price auctions are envy free, but it is always possible
to construct a realizations of others' reports where ti is pivotal
and prefers to report as tj
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Obtaining the Classi�cation

I Condition 2: Envy freeness �but for tie breaking�

I A direct mechanism {(Φn)N,T} is envy-free but for tie

breaking (EF-TB) if for each n there exists a function
xn : (T × [0, 1])N → ∆(X n

0
), symmetric over its coordinates,

such that

Φn(t) =

ˆ
l∈[0,1]n

xn(t, l)dl

and, for all i , j , n, t, and l , if li ≥ lj then

uti [x
n
i (t, l)] ≥ uti [x

n
j (t, l)].

I Proposition: EF-TB→SP-L

I Covers the rest of the mechanisms in the table

I Approximate CEEI and Deferred Acceptance are EF-TB but
are not EF (per an example in Bogomolnaia and Moulin, 2001)

I Proof more involved, see Appendix A for details
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Relationship to Theory Literature on Large Markets

I We obtain results for several mechanisms whose large-market
incentives properties are well understood:

I Uniform-Price Auctions (Swinkels, 2001)
I Probabilistic Serial (Kojima Manea, 2010)
I Deferred Acceptance (Immorlica Mahdian 2005; Kojima

Pathak, 2009)
I Double Auctions (Rustichini Satterthwaite Williams 1994;

Cripps Swinkels 2006)
I Walrasian Mechanism (Roberts and Postlewaite 1976; Jackson

and Manelli 1997)

I As well as for some mechanisms whose large-market properties
are less well understood

I Hylland-Zeckhauser Pseudomarket (1979) and its
generalization (Budish, Che, Kojima and Milgrom, 2012)

I Approximate CEEI (Budish, 2011)
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Relationship to Theory Literature on Large Markets
I Moreover, we obtain these results using a single notion of

approximate incentive compatibility, SP-L
I Previous literature has used di�erent notions, tailored for each

mechanism
I Roberts and Postlewaite: truthful reporting is ex-post

approximately optimal for all opponent reports where eqm
prices vary continuously with reports

I RSW: exact Bayes-Nash equilibria
I Swinkels: both exact and approximate Bayes-Nash equilibria
I Kojima and Pathak: approximate Nash equilibria, with

complete information on one side of the market and
incomplete on the other side. Also approximate Bayes-Nash

I Kojima and Manea: exact SP, in a large enough �nite market

I Tradeo�s
I SP-L weaker than many of the previous notions (or

non-comparable)
I We require �nite type, action, outcome spaces
I Our analysis does not yield an understanding of the exact

forces pushing away from truthful behavior in �nite markets
(e.g., �rst-order condition analysis of RSW)
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I RSW: exact Bayes-Nash equilibria
I Swinkels: both exact and approximate Bayes-Nash equilibria
I Kojima and Pathak: approximate Nash equilibria, with

complete information on one side of the market and
incomplete on the other side. Also approximate Bayes-Nash

I Kojima and Manea: exact SP, in a large enough �nite market
I Tradeo�s

I SP-L weaker than many of the previous notions (or
non-comparable)

I We require �nite type, action, outcome spaces
I Our analysis does not yield an understanding of the exact

forces pushing away from truthful behavior in �nite markets
(e.g., �rst-order condition analysis of RSW)



Relationship to Empirical Literature on Manipulability

Problem Manipulable in the Large SP-L

Multi-Unit

Auctions
Pay-As-Bid Uniform Price

Single-Unit

Assignment
Boston Mechanism

Probabilistic Serial

HZ Pseudomarket

Multi-Unit

Assignment

Bidding Points Auction

HBS Draft

CEEI

Generalized HZ

Matching Priority Match Deferred Acceptance

Other
Double Auctions

Walrasian Mechanism



Relationship to Empirical Literature on Manipulability

I For each of the mechanisms in the Manipulable in the Large
column of the table, there is empirical evidence that
participants strategically misreport their preferences in practice.

I Also evidence that some participants fail to play best
responses, and that this undermines e�ciency, fairness, or
other design objectives

I Pay-as-bid auctions: Friedman (1991), Jegadeesh (1993),
Brenner et al. (2009)

I Boston mechanism: Abdulkadiro§lu et al (2006, 2009)
I Bidding points auction: Krishna and Ünver (2008), Budish

(2011)
I HBS draft mechanism: Budish and Cantillon (2012)
I Priority match: Roth (1990, 1991, 2002)



Relationship to Empirical Literature on Manipulability

I By contrast, to the best of our knowledge, there are no
empirical examples where an SP-L market design is shown to
be harmfully manipulated in a large market

I Evidence to date thus suggests that the relevant distinction for
practice is SP-L vs. not SP-L, rather than SP vs. not SP.

I More conservatively: SP vs. SP-L vs. not SP-L
I Caution: no evidence one way or the other for many of the

SP-L mechanisms in the table



Roadmap

I Introduction

I Environment

I Strategyproof in the Large

I Classi�cation of non-SP Mechanisms

I Constructing SP-L Mechanisms

I Discussion and Extensions

I Conclusion



Constructing SP-L Mechanisms from Bayes-Nash

Mechanisms

I Goal: show that, in large markets, SP-L is in a well-de�ned
sense approximately costless to impose relative to Bayes-Nash
(or Nash) incentive compatibility

I Together with the analysis above that suggests that SP-L is
attractive, completes our argument that SP-L is a useful
second best to SP

Plan

1. Give the construction

2. Quasi-continuity

3. State construction theorem, and sketch proof

4. Discussion



Construction: Preliminaries

I De�nition: A Limit Bayes-Nash Equilibrium at a given prior
µ ∈ ∆T is a strategy σ∗ : T → ∆A such that for all ti , ai

uti [φ
∞(σ∗(ti ), σ

∗(µ))] ≥ uti [φ
∞(ai , σ

∗(µ))]

I where σ∗(µ) is the distribution of actions given iid draws
according to µ and play according to σ∗(·)

I De�nition: A family of limit equilibria (σ∗µ)µ∈∆T speci�es a
limit BNE for each prior µ ∈ ∆T .

I Notation

I linearly extend the de�nition of a mechanism from action
vectors to distributions of action vectors. Given m̄ ∈ ∆(An), let

Φn(m̄) =
∑
a

Φn(a) · m̄(a).

I given a type vector t, let emp[t] denote its empirical
distribution on T .
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Construction

I Input: a mechanism {(Φn)N,A} and a family of limit equilibria
(σ∗µ)µ∈∆T

I Construct a new direct mechanism, {(Fn)N,T} according to:

F n(t) = Φn(σ∗emp[t](t)).

I In words: F n(·) acts as a proxy playing the original mechanism
on each agent's behalf, plays σ∗emp[t](ti ) on behalf of ti

I Key feature: rather than use the Bayes-Nash equilibrium
strategy associated with the �true prior�, which need not be
known by the designer, it uses the strategy, σ∗emp[t](·)
associated with the empirical distribution of reports

I Proxy: �I do not know the distribution of preferences, and
presumably neither do you. But whatever the distribution
happens to be, I will play the Bayes-Nash strategy on your
behalf.�

I Note: in �nite markets, i 's report a�ects emp[t], and hence
what BNE gets �activated�
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Quasi-Continuity

I We will show that {(Fn)N,T} constructed according to
F n(t) = Φn(σ∗emp[t](t)):

I Is SP-L
I Gives agents approximately the same outcomes as the BNE of

the original mechanism {(Φn)N,A}

I This result requires a continuity condition on {(Φn)N,A} and
its equilibria, that we turn to next



Quasi-Continuity

A family of equilibria (σ∗µ)µ∈∆T of mechanism {(Φn)N,A} is
quasi-continuous at full support prior µ0 ∈ ∆T if for every ε > 0,
there exists a neighborhood N of µ0 that can be decomposed as
N = ∪1≤k≤KAk ∪ B with each Ak open, such that:

1. If types are drawn iid according to µ0, then the probability
that the empirical distribution of types lands within distance
1/n of B goes to zero as n grows large. Formally,

lim
n→∞

Pr{distance(emp[t],B) ≤ 1/n|t ∈ T n, t ∼ iid(µ0)} = 0.
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Quasi-Continuity

2. Within each set Ak , in a large enough market, agents'
outcomes are continuous with respect to changes in the
empirical distribution of opponents' types and the strategy
that agents use.

Formally, for each Ak , there exists n0 such that for any
n > n0, and any µ, µ′, emp[ti , t−i ], emp[ti , t

′
−i ] ∈ Ak , we have:

|Φn
i (σ∗µ(ti ), σ

∗
µ(t−i ))− Φn

i (σ∗µ′(ti ), σ
∗
µ′(t

′
−i ))| < ε.

I The family is continuous at µ0 if B = ∅ and K = 1.

I The family is (quasi-)continuous if it is (quasi-)continuous at
every prior in ∆̄T .

I N.B. our notion of continuous is stronger than e.g. Kalai's
(2004): continuous w/r/t both reports and strategies
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Quasi-Continuity

I Why quasi-continuity? Many discrete-goods allocation
mechanisms have knife-edge discontinuities, and it is
important that our main theorem include such mechanisms.

I Consider the uniform-price auction:
I Generic case

I Expected demand at µ0 strictly exceeds supply at the limit
market-clearing price: E [D(ρ∗(µ0); ti )|ti ∼ µ0] > k

I Equilibrium is locally continuous

I Knife-edge case
I Expected demand at µ0 is exactly equal to supply at the limit

market-clearing price: E [D(ρ∗(µ0); ti )|ti ∼ µ0] = k.
I Take a small neighborhood N of µ0 with:

I A1 = {µ ∈ N : E [D(ρ∗(µ0); ti )|ti ∼ µ] > k}
I A2 = {µ ∈ N : E [D(ρ∗(µ0); ti )|ti ∼ µ] < k}
I B = N\(A1 ∪ A2)

I Outcomes are continuous within the sets A1 and A2, and the
likelihood of landing in the knife-edge set B goes to zero as
n→∞.
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Quasi-Continuity

I So, the uniform-price auction's family of equilibria is not
continuous, but is quasi-continuous

I We show the same for pay-as-bid (see Appendix D)

Other Examples:

I Boston mechanism

I Potential discontinuity: if a school reaches capacity exactly at
the end of some round

I College admissions model

I Potential discontinuity: students who are right at the cuto� for
a particular college

I Bidding Points Auction

I Potential discontinuity: students whose bid is right at the
cuto� for a particular course



Construction Theorem

I Suppose we are given a non-SP-L mechanism {(Φn)N,A} with
a quasi-continuous family of Bayes-Nash equilibria (σ∗µ)µ∈∆T .
Fix an arbitrary full support prior µ0 ∈ ∆T

I Construct {(Fn)N,T} according to:

F n(t) = Φn(σ∗emp[t](t)).

The constructed mechanism has the following properties:

1. {(F n)N,T} is SP-L.
2. If {(Φn)N,A} is continuous at µ0, then, in the limit as

n→∞, truthful play of {(F n)N,T} gives agents the same
outcomes as Bayes-Nash eqm play of {(Φn)N,A} for prior µ0.

3. If {(Φn)N,A} is not continuous at µ0 then, in the limit,
{(F n)N,T} coincides with a convex combination of BNE
outcomes of {(Φn)n∈N,A}, for priors in an arbitrarily small
neighborhood of µ0.

Takeaway: SP-L is approximately costless relative to Bayes-Nash
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Sketch of Proof: Step 1

I Suppose that the other agents report truthfully, according to
the true prior µ0

I In a �nite market there will be sampling error, so the realized
empirical will be, say µ̂

I As n→∞, the realized empirical µ̂ converges to µ0, by the
law of large numbers.

I Assume for now that the original mechanism is continuous at
µ0.

I Then agent i 's allocation, Φn
i (σ∗µ̂(ti ), σ

∗
µ̂(t−i )) is converging to

φ∞(σ∗µ0(ti ), σ
∗
µ0(µ0)), exactly what he receives under the limit

Bayes-Nash equilibrium of the original mechanism.

I Thus, if all agents report truthfully, our mechanism coincides
with the original mechanism in the limit, as required.
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Sketch of Proof: Step 2

I Now, suppose that the agents other than i misreport their
preferences, according to some distribution m ∈ ∆T .

I As before, in a �nite market of size n, there will be sampling
error, so the realized empirical will be, say, m̂.

I As n→∞, m̂→ m. Assume continuity at m.

I Then agent i 's allocation, Φn
i (σ∗m̂(ti ), σ

∗
m̂(t−i )) is converging

to φ∞(σ∗m(ti ), σ
∗
m(m)), exactly what he receives under the

original mechanism in the Bayes-Nash equilibrium
corresponding to prior m.

I Key point: even though the other agents are systematically
misreporting their preferences, our agent i remains happy to
tell the truth!

I Our agent doesn't care that the others are misreporting: it's as
if he's in the m world not the µ0 world. Still wants to report
truthfully, hence SP-L

I Note role of private values assumption
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Sketch of Proof: Step 3

I The last step is to describe what happens in the event that the
equilibrium of the original mechanism is not continuous at µ0.

I This requires a technical lemma, informally:

I For any arbitrary full support prior m ∈ ∆T , the allocation an
agent receives under {(F n)N,T} can be approximated by a
convex combination of the allocations he would receive in the
limit Bayes-Nash equilibria of {(Φn)N,A}, for priors arbitrarily
close to m.

I Key to the proof: in a large enough market, a single agent
cannot appreciably change the probability that the aggregate
pro�le lands in each region Ak

I This allows us to exploit the continuity within each region Ak ,
and the vanishing likelihood that the aggregate pro�le lands
near the discontinuity region B.
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Discussion of Theorem 1

1. Extensions of the theorem

2. Relation to the revelation principle

3. Relation to previous BNE-SP equivalences

4. Application to the ongoing debate re the Boston mechanism



Extensions of Theorem 1

I Semi-Anonymity

I Punchline: results can be generalized from anonymous to
semi-anonymous mechanisms (Kalai, 2004)

I Can use complete-information Nash equilibria as our input,
instead of Bayes-Nash equilibria

I Constructed mechanism becomes: agents report their types,
then compute and execute the CINE associated with the
reported types

I Neat feature: exactly coincides with the original mechanism if
everyone reports truthfully

I N.B.: not a Nash eqm to report truthfully in �nite markets:

i 's report a�ects emp[t] which a�ects j 's strategy as activated

by the proxy

I Can use �nite economy Bayes-Nash equilibria as our input,
instead of limit BNE



Relation to the Revelation Principle

I Traditional Revelation Principle (Myerson, 1979)

I Mechanism knows the prior, µ0
I Announces the BNE associated with that prior, σ∗µ0(·).
I Mechanism plays σ∗µ0(ti ) on behalf of agent who reports ti
I Reporting truthfully is a BNE

I Our mechanism

I Mechanism does not know the prior
I Instead infers a prior from the empirical
I If agents report truthfully, inference is correct in the limit
I If agents misreport, so empirical m̂ is very di�erent from prior
µ0, our mechanism automatically adjusts to play σ∗m̂

I Hence, we get SP-L not just Bayes Nash
I And, our mechanism is prior free, consistent with Wilson

doctrine



Relation to the Revelation Principle

I Traditional Revelation Principle (Myerson, 1979)

I Mechanism knows the prior, µ0

I Announces the BNE associated with that prior, σ∗µ0(·).
I Mechanism plays σ∗µ0(ti ) on behalf of agent who reports ti
I Reporting truthfully is a BNE

I Our mechanism

I Mechanism does not know the prior
I Instead infers a prior from the empirical
I If agents report truthfully, inference is correct in the limit
I If agents misreport, so empirical m̂ is very di�erent from prior
µ0, our mechanism automatically adjusts to play σ∗m̂

I Hence, we get SP-L not just Bayes Nash
I And, our mechanism is prior free, consistent with Wilson

doctrine



Relation to the Revelation Principle

I Traditional Revelation Principle (Myerson, 1979)

I Mechanism knows the prior, µ0
I Announces the BNE associated with that prior, σ∗µ0(·).

I Mechanism plays σ∗µ0(ti ) on behalf of agent who reports ti
I Reporting truthfully is a BNE

I Our mechanism

I Mechanism does not know the prior
I Instead infers a prior from the empirical
I If agents report truthfully, inference is correct in the limit
I If agents misreport, so empirical m̂ is very di�erent from prior
µ0, our mechanism automatically adjusts to play σ∗m̂

I Hence, we get SP-L not just Bayes Nash
I And, our mechanism is prior free, consistent with Wilson

doctrine



Relation to the Revelation Principle

I Traditional Revelation Principle (Myerson, 1979)

I Mechanism knows the prior, µ0
I Announces the BNE associated with that prior, σ∗µ0(·).
I Mechanism plays σ∗µ0(ti ) on behalf of agent who reports ti

I Reporting truthfully is a BNE

I Our mechanism

I Mechanism does not know the prior
I Instead infers a prior from the empirical
I If agents report truthfully, inference is correct in the limit
I If agents misreport, so empirical m̂ is very di�erent from prior
µ0, our mechanism automatically adjusts to play σ∗m̂

I Hence, we get SP-L not just Bayes Nash
I And, our mechanism is prior free, consistent with Wilson

doctrine



Relation to the Revelation Principle

I Traditional Revelation Principle (Myerson, 1979)

I Mechanism knows the prior, µ0
I Announces the BNE associated with that prior, σ∗µ0(·).
I Mechanism plays σ∗µ0(ti ) on behalf of agent who reports ti
I Reporting truthfully is a BNE

I Our mechanism

I Mechanism does not know the prior
I Instead infers a prior from the empirical
I If agents report truthfully, inference is correct in the limit
I If agents misreport, so empirical m̂ is very di�erent from prior
µ0, our mechanism automatically adjusts to play σ∗m̂

I Hence, we get SP-L not just Bayes Nash
I And, our mechanism is prior free, consistent with Wilson

doctrine



Relation to the Revelation Principle

I Traditional Revelation Principle (Myerson, 1979)

I Mechanism knows the prior, µ0
I Announces the BNE associated with that prior, σ∗µ0(·).
I Mechanism plays σ∗µ0(ti ) on behalf of agent who reports ti
I Reporting truthfully is a BNE

I Our mechanism

I Mechanism does not know the prior
I Instead infers a prior from the empirical
I If agents report truthfully, inference is correct in the limit
I If agents misreport, so empirical m̂ is very di�erent from prior
µ0, our mechanism automatically adjusts to play σ∗m̂

I Hence, we get SP-L not just Bayes Nash
I And, our mechanism is prior free, consistent with Wilson

doctrine



Relation to the Revelation Principle

I Traditional Revelation Principle (Myerson, 1979)

I Mechanism knows the prior, µ0
I Announces the BNE associated with that prior, σ∗µ0(·).
I Mechanism plays σ∗µ0(ti ) on behalf of agent who reports ti
I Reporting truthfully is a BNE

I Our mechanism

I Mechanism does not know the prior

I Instead infers a prior from the empirical
I If agents report truthfully, inference is correct in the limit
I If agents misreport, so empirical m̂ is very di�erent from prior
µ0, our mechanism automatically adjusts to play σ∗m̂

I Hence, we get SP-L not just Bayes Nash
I And, our mechanism is prior free, consistent with Wilson

doctrine



Relation to the Revelation Principle

I Traditional Revelation Principle (Myerson, 1979)

I Mechanism knows the prior, µ0
I Announces the BNE associated with that prior, σ∗µ0(·).
I Mechanism plays σ∗µ0(ti ) on behalf of agent who reports ti
I Reporting truthfully is a BNE

I Our mechanism

I Mechanism does not know the prior
I Instead infers a prior from the empirical

I If agents report truthfully, inference is correct in the limit
I If agents misreport, so empirical m̂ is very di�erent from prior
µ0, our mechanism automatically adjusts to play σ∗m̂

I Hence, we get SP-L not just Bayes Nash
I And, our mechanism is prior free, consistent with Wilson

doctrine



Relation to the Revelation Principle

I Traditional Revelation Principle (Myerson, 1979)

I Mechanism knows the prior, µ0
I Announces the BNE associated with that prior, σ∗µ0(·).
I Mechanism plays σ∗µ0(ti ) on behalf of agent who reports ti
I Reporting truthfully is a BNE

I Our mechanism

I Mechanism does not know the prior
I Instead infers a prior from the empirical
I If agents report truthfully, inference is correct in the limit

I If agents misreport, so empirical m̂ is very di�erent from prior
µ0, our mechanism automatically adjusts to play σ∗m̂

I Hence, we get SP-L not just Bayes Nash
I And, our mechanism is prior free, consistent with Wilson

doctrine



Relation to the Revelation Principle

I Traditional Revelation Principle (Myerson, 1979)

I Mechanism knows the prior, µ0
I Announces the BNE associated with that prior, σ∗µ0(·).
I Mechanism plays σ∗µ0(ti ) on behalf of agent who reports ti
I Reporting truthfully is a BNE

I Our mechanism

I Mechanism does not know the prior
I Instead infers a prior from the empirical
I If agents report truthfully, inference is correct in the limit
I If agents misreport, so empirical m̂ is very di�erent from prior
µ0, our mechanism automatically adjusts to play σ∗m̂

I Hence, we get SP-L not just Bayes Nash
I And, our mechanism is prior free, consistent with Wilson

doctrine



Relation to the Revelation Principle

I Traditional Revelation Principle (Myerson, 1979)

I Mechanism knows the prior, µ0
I Announces the BNE associated with that prior, σ∗µ0(·).
I Mechanism plays σ∗µ0(ti ) on behalf of agent who reports ti
I Reporting truthfully is a BNE

I Our mechanism

I Mechanism does not know the prior
I Instead infers a prior from the empirical
I If agents report truthfully, inference is correct in the limit
I If agents misreport, so empirical m̂ is very di�erent from prior
µ0, our mechanism automatically adjusts to play σ∗m̂

I Hence, we get SP-L not just Bayes Nash

I And, our mechanism is prior free, consistent with Wilson
doctrine



Relation to the Revelation Principle

I Traditional Revelation Principle (Myerson, 1979)

I Mechanism knows the prior, µ0
I Announces the BNE associated with that prior, σ∗µ0(·).
I Mechanism plays σ∗µ0(ti ) on behalf of agent who reports ti
I Reporting truthfully is a BNE

I Our mechanism

I Mechanism does not know the prior
I Instead infers a prior from the empirical
I If agents report truthfully, inference is correct in the limit
I If agents misreport, so empirical m̂ is very di�erent from prior
µ0, our mechanism automatically adjusts to play σ∗m̂

I Hence, we get SP-L not just Bayes Nash
I And, our mechanism is prior free, consistent with Wilson

doctrine



Relation to Previous BNE-SP Equivalences

I Our theorem can be understood in relation to Manelli and
Vincent (2010) and Gershkov et al (forth.), who �nd striking
exact equivalences between Bayes-Nash and SP in �nite
markets

I Myerson (1981): in optimal auction problem, no gap between
BNE and SP

I Manelli and Vincent (2010): in Myerson's environment,
equivalence between BNE and SP obtains for any BNIC
mechanism, not just revenue maximizing

I Gershkov et al. (forth.): broaden to other mechanism design
environments, still with 1-D types and quasi-linear utility

I Limitation of these results: one-dimensional types, quasi-linear
utility.

I Rules out all mechanisms in Table 1

I Our Theorem 1 recovers approximate equivalence between
BNE and SP, for a rich enough class environments to include
multi-object auctions, matching, assignment, school choice,
etc.

I Key to our equivalence is that the market is large



Discussion of Theorem 1: Boston Mechanism
Generation 1:

I Abdulkadiro§lu and Sönmez (2003) and Abdulkadiro§lu et al
(2006) criticized the Boston Mechanism on the grounds that it
is not strategyproof

I Proposed that strategyproof Gale-Shapley deferred acceptance
be used instead

I GS eventually adopted for use in practice, in Boston, NYC,
others

Generation 2:

I Abdulkadiro§lu, Che and Yasuda (2011), Miralles (2008),
Featherstone and Niederle (2009) argue that maybe Gen 1 was
too quick to dismiss the Boston mechanism

I Boston has (family of) Bayes Nash equilibria that yield greater
welfare than does the dominant strategy equilibrium of
Gale-Shapley

I Interpretation: strategyproofness has a cost
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Discussion of Theorem 1: Boston Mechanism

Our Paper (Gen 3):

I Bayes-Nash equilibria have costs too

I Students must have common knowledge of preference
distribution

I Coordinate on a speci�c equilibrium
I Make very precise calculations to determine whether to risk

asking for a popular school
I Empirical record suggests these costs are important in practice

I Our main result says that all of this is unnecessary in the large
market limit: there must exist yet another mechanism that
implements the same outcomes as the attractive BNE
equilibria, yet with dominant strategy incentives



Discussion of Theorem 1: Boston Mechanism

Our Paper (Gen 3):

I Bayes-Nash equilibria have costs too

I Students must have common knowledge of preference
distribution

I Coordinate on a speci�c equilibrium
I Make very precise calculations to determine whether to risk

asking for a popular school
I Empirical record suggests these costs are important in practice

I Our main result says that all of this is unnecessary in the large
market limit: there must exist yet another mechanism that
implements the same outcomes as the attractive BNE
equilibria, yet with dominant strategy incentives



Discussion of Theorem 1: Boston Mechanism

Our Paper (Gen 3):

I Bayes-Nash equilibria have costs too

I Students must have common knowledge of preference
distribution

I Coordinate on a speci�c equilibrium
I Make very precise calculations to determine whether to risk

asking for a popular school
I Empirical record suggests these costs are important in practice

I Our main result says that all of this is unnecessary in the large
market limit: there must exist yet another mechanism that
implements the same outcomes as the attractive BNE
equilibria, yet with dominant strategy incentives



Discussion of Theorem 1: Boston Mechanism

Our Paper (Gen 3):

I Bayes-Nash equilibria have costs too

I Students must have common knowledge of preference
distribution

I Coordinate on a speci�c equilibrium
I Make very precise calculations to determine whether to risk

asking for a popular school
I Empirical record suggests these costs are important in practice

I Our main result says that all of this is unnecessary in the large
market limit: there must exist yet another mechanism that
implements the same outcomes as the attractive BNE
equilibria, yet with dominant strategy incentives



Roadmap

I Introduction

I Environment

I Strategyproof in the Large

I Classi�cation of non-SP Mechanisms

I Constructing SP-L Mechanisms

I Discussion and Extensions

I Conclusion



Summary

I This paper proposes SP-L as a second-best alternative to SP:

1. Many of the bene�ts of SP design favor SP-L design as well
I Wilson doctrine, strategic simplicity, fairness

2. Classi�cation of non-SP mechanisms favors SP-L
I Organizes Friedman on auctions, Roth on matching
I Organizes theory literature on approx IC in large markets
I Empirical evidence: It is mechanisms that not only are not SP

but that are not even SP-L that have problems in practice

3. Under some assumptions, SP-L is approximately costless
relative to Bayes-Nash or Nash

I Our analysis provides formal justi�cation for focusing on SP-L
when confronting a new market design problem for which there
are no good SP solutions

I Example: Budish (JPE 2011) on course allocation, given
Papai-Ehlers-Klaus dictatorship theorems (real-life
implementation at Wharton planned for Fall 2013)



Summary

I This paper proposes SP-L as a second-best alternative to SP:

1. Many of the bene�ts of SP design favor SP-L design as well
I Wilson doctrine, strategic simplicity, fairness

2. Classi�cation of non-SP mechanisms favors SP-L
I Organizes Friedman on auctions, Roth on matching
I Organizes theory literature on approx IC in large markets
I Empirical evidence: It is mechanisms that not only are not SP

but that are not even SP-L that have problems in practice

3. Under some assumptions, SP-L is approximately costless
relative to Bayes-Nash or Nash

I Our analysis provides formal justi�cation for focusing on SP-L
when confronting a new market design problem for which there
are no good SP solutions

I Example: Budish (JPE 2011) on course allocation, given
Papai-Ehlers-Klaus dictatorship theorems (real-life
implementation at Wharton planned for Fall 2013)



Summary

I This paper proposes SP-L as a second-best alternative to SP:

1. Many of the bene�ts of SP design favor SP-L design as well
I Wilson doctrine, strategic simplicity, fairness

2. Classi�cation of non-SP mechanisms favors SP-L
I Organizes Friedman on auctions, Roth on matching
I Organizes theory literature on approx IC in large markets
I Empirical evidence: It is mechanisms that not only are not SP

but that are not even SP-L that have problems in practice

3. Under some assumptions, SP-L is approximately costless
relative to Bayes-Nash or Nash

I Our analysis provides formal justi�cation for focusing on SP-L
when confronting a new market design problem for which there
are no good SP solutions

I Example: Budish (JPE 2011) on course allocation, given
Papai-Ehlers-Klaus dictatorship theorems (real-life
implementation at Wharton planned for Fall 2013)



Summary

I This paper proposes SP-L as a second-best alternative to SP:

1. Many of the bene�ts of SP design favor SP-L design as well
I Wilson doctrine, strategic simplicity, fairness

2. Classi�cation of non-SP mechanisms favors SP-L
I Organizes Friedman on auctions, Roth on matching
I Organizes theory literature on approx IC in large markets
I Empirical evidence: It is mechanisms that not only are not SP

but that are not even SP-L that have problems in practice

3. Under some assumptions, SP-L is approximately costless
relative to Bayes-Nash or Nash

I Our analysis provides formal justi�cation for focusing on SP-L
when confronting a new market design problem for which there
are no good SP solutions

I Example: Budish (JPE 2011) on course allocation, given
Papai-Ehlers-Klaus dictatorship theorems (real-life
implementation at Wharton planned for Fall 2013)



Summary

I This paper proposes SP-L as a second-best alternative to SP:

1. Many of the bene�ts of SP design favor SP-L design as well
I Wilson doctrine, strategic simplicity, fairness

2. Classi�cation of non-SP mechanisms favors SP-L
I Organizes Friedman on auctions, Roth on matching
I Organizes theory literature on approx IC in large markets
I Empirical evidence: It is mechanisms that not only are not SP

but that are not even SP-L that have problems in practice

3. Under some assumptions, SP-L is approximately costless
relative to Bayes-Nash or Nash

I Our analysis provides formal justi�cation for focusing on SP-L
when confronting a new market design problem for which there
are no good SP solutions

I Example: Budish (JPE 2011) on course allocation, given
Papai-Ehlers-Klaus dictatorship theorems (real-life
implementation at Wharton planned for Fall 2013)



Summary

I This paper proposes SP-L as a second-best alternative to SP:

1. Many of the bene�ts of SP design favor SP-L design as well
I Wilson doctrine, strategic simplicity, fairness

2. Classi�cation of non-SP mechanisms favors SP-L
I Organizes Friedman on auctions, Roth on matching
I Organizes theory literature on approx IC in large markets
I Empirical evidence: It is mechanisms that not only are not SP

but that are not even SP-L that have problems in practice

3. Under some assumptions, SP-L is approximately costless
relative to Bayes-Nash or Nash

I Our analysis provides formal justi�cation for focusing on SP-L
when confronting a new market design problem for which there
are no good SP solutions

I Example: Budish (JPE 2011) on course allocation, given
Papai-Ehlers-Klaus dictatorship theorems (real-life
implementation at Wharton planned for Fall 2013)
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Caveat

I No simple bright-line answer to the question of how large is
large enough

I This is true even in most studies of the convergence properties
of speci�c mechanisms

I Convergence is often slow, or has a large constant term
I Exception: double auctions (e.g., Rustichini, Satterthwaite and

Williams 1994)

I We view the limit as a frequently useful (always imperfect)
abstraction

I Just as the assumption of price-taking behavior is a useful if
imperfect abstraction in some other parts of economics

I In any speci�c context, the analyst's case that the market is
large can be enhanced with computational simulations,
empirical analysis, etc.

I In environments where this abstraction is compelling:
consider designing a mechanism that is SP-L!
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